Dr. Sergiy Vasylkevych
Foto: Sergiy Vasylkevych
Research scientist
Anschrift
Büro
Kontakt
peronal web site
Publications
M. Oliver and S. Vasylkevych. M. Oliver and S. Vasylkevych. Geodesic motion on groups of diffeomorphisms with H^1 metric as geometric generalised Lagrangian mean theory. Geophysical & Astrophysical Fluid Dynamics. 113 (2019), 1-25. 10.1080/03091929.2019.1639697.
J. Robbins, V. Slastikov, and S. Vasylkevych. Domain wall propagation in nanowires under strong transverse fields, submitted for publication.
M. Oliver and S. Vasylkevych. A new construction of modified equations for variational integrators, submitted for publication.
G. Badin, M. Oliver, and S.~Vasylkevych. Geometric Lagrangian averaged Euler-Boussinesq and primitive equations, J. Phys. A: Math. Theor. 51 (2018), 455501.
O. Tretiakov, M. Morini, S. Vasylkevych and V. Slastikov. Engineering curvature-induced anisotropy in thin ferromagnetic films, Phys. Rev. Lett. 119 (2017), 077203.
Yu. Gaididei, A. Goussev, V. Kravchuk, O. Pylypovskyi, J. Robbins, D. Sheka, V. Slastikov, and S. Vasylkevych. Magnetization in narrow ribbons: curvature effects, J. Phys. A: Math. Theor. 50 (2017), 385401 .
M. Oliver and S.Vasylkevych. Generalized large-scale semigeostrophic approximations for the f-plane primitive equations, J. Phys. A: Math. Theor. 49 (2016), 184001 .
M. Calik, M. Oliver, and S. Vasylkevych. Global well-posedness for the generalized large-scale semigeostrophic equations, Arch. Ration. Mech. An., 207 (2013), 3, 969--990 .
M. Oliver and S. Vasylkevych. Generalized LSG models with spatially varying Coriolis parameter, Geophys. Astrophys. Fluid Dyn., 107 (2013), 3, 259--276 .
M. Oliver and S. Vasylkevych. Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling, Discret and Contin. Dyn. S. A, 31 (2011), 3, 827--846 .
S. Vasylkevych. Poisson structures for PDEs associated with diffeomorphism groups, California Institute of Technology, Ph. D. thesis (2005) .
S. I. Vasil’kevich, V. S. Mel’nik, and V. V. Slastikov. On the global attractors of multivalued semiprocesses (in Russian), Proc. Nation. Acad. Sci. Ukraine, Nat. Sciences, Mathematics, 7 (1999), 12–18.
S. I. Vasil’kevich and V. V. Slastikov. On the compactness of the solution set of the Navier-Stokes equation (in Russian), Proc. Nation. Acad. Sci. Ukraine, Nat. Sciences, Mathematics, 8 (1997), 17–20.
S. I. Vasil’kevich and V. V. Slastikov. On necessary conditions for the optimality of controls for multidimensional equations of hydrodynamics (in Russian), J. Automat. Inform. Sci., 156 (1997), 1, 130–137.