Group seminar on 08. June, 14:15 CET
Validation of a Prototype Global 4D-Var Data Assimilation System for the MPAS-Atmosphere Model
Xiaoxu Tian and Xiaolei Zou
A four-dimensional variational (4D-Var) data assimilation (DA) system is developed for the global nonhydrostatic atmospheric dynamical core of the Model for Prediction Across Scales (MPAS). The nonlinear forward and adjoint models of the MPAS-Atmosphere dynamic core are included in a Python-driven structure to formulate a continuous 4D-Var DA system, shown to effectively minimize the cost function that measures the distances between the nonlinear model simulations and observations. In this study, three idealized experiments with a six-hour assimilation window are conducted to validate and demonstrate the numerical feasibilities of the 4D-Var DA system for both uniform- and variable-resolution meshes. In the first experiment, only a single point observation is assimilated. The resulting solution shows that the analysis increments have highly flow-dependent features. The observations in the second experiment are all model prognostic variables that span the entire global domain, the purpose of which is to check how well the initial conditions six hours prior to the observations can be reversely inferred. The differences between the analysis and the referenced "truth" are significantly smaller than those calculated with the first guess. The third experiment assimilates the mass field only, i.e., potential temperatures in the case of MPAS-Atmosphere, and examines the impacts on the wind field and the mass field under initial conditions. Both the wind vectors and potential temperatures in the analysis agree more with the referenced "truth" than the first guess because the adjustments made to the initial conditions are dynamically consistent in the 4D-Var system.