

Memi Technical Report 1

K. Heinke Schlünzen (2006)

Part A - Detailed description of the coding
rules for the MeMi model system
A 1. Motivation

The main goals of the coding rules are:

o readability / comprehensibility of the source code
o modular structure with simultaneous independency of the single modules
o uniform module structure
o avoiding semantic mistakes
o improved maintainability
o platform independent code - portability
o uniform error handling
o efficient use of computer resources
o version control
o quality assurance
o quality check

The version control is made with comment lines within the program unit (see section A 5) and
for the code units themselves with a tool (Wosik et al., 1992) based on the GNU-rcs (source
code management), which uses version numbers for changed units. Thus using the tool older
versions are always available and can be re-used. For the model system one single basic
version is available for the whole MITRAS/METRAS user group on "niesel" in the directory
/pf/u/u232015/rcs/[0]. New or changed modules are put in these libraries after checking of
coding rules, code reading and carrying out test runs. The complete external documentation of
the model system is managed with the same release system (GNU rcs) and also available for
the whole user group (Sub-Directory f90_doc).

A 2. The Fortran 90 standard

Fortran 90 has some more features than FORTRAN 77 and shows some general changes.
However, a standard FORTRAN 77 program is still compatible with a Fortran 90 program.
For programming new code the new facilities of Fortran 90 should be used. In many cases the
use of generic functions produces very good performance, e.g. the use of MATMUL and
DOT_PRODUCT.

Some elements from FORTRAN 77 will become obsolete in Fortran 90:

o pause[3]
o entry
o arithmetic if
o loop index with type not equal integer
o common end of several do loops

https://www.mi.uni-hamburg.de/index.php?id=688#1364
https://www.mi.uni-hamburg.de/index.php?id=688#1366
https://www.mi.uni-hamburg.de/index.php?id=688#1366

o do loop end not equal continue or enddo
o branch to endif outside the block if
o alternative return from procedures[4]
o assign and assigned goto statement
o Hollerith constants

These statements are not allowed for use in newly written routines. Also numbered labels are
uncommon in Fortran 90. Thus the following changes from FORTRAN 77 to Fortran 90 have
to be made:

o goto -> case, if, do while, exit, cycle
o Labelled do -> (Named) do and enddo
o format -> character-parameter
o common-block is written as module. The use of single

variables/parameters/functions has to be realised with use <name> ,only :
<var>.

o equivalence -> use generic functions.

A.3 Coding Rules

A 3.1 Language
Only the use of Fortran 90 is allowed. The MITRAS/METRAS model system is available for
a wide user group, thus all elements and comments have to be written in English.

A 3.2 Elements not being used
• Functions with side effects are not allowed. This means that functions containing write

or read statements are forbidden. The performance of the code deteriorates, especially
if parallelisation is used.

• Within the source code a series of statements is not allowed (no ,,;"). Thus the code is
clear and every user can easily read it.

• The tabulator is not allowed. In this mannerthe code looks identical in all editors.
Within the emacs the automatic tabulators can be used, because they are realised as
blanks.

• The attribute dimension is not allowed
• It is not allowed to use user defined operators.User defined data types are only

allowed if it is absolutely necessary or if no mathematics is made. (Test runs in
December 1996 at the IfT in Leipzig showed that the required time may be up to a
factor 30, if these data types are used).

A 3.3 General source code form
• Program units as short as possible. A maximum of 50 executable lines is recomended.
• At the beginning of each program unit a comment block is given (see section A 5). In

this comment block all used local variables and parameters are declered in alphabetic
order. The global variables and parameters are given in a separate table (see section A
6).

https://www.mi.uni-hamburg.de/index.php?id=688#1366
https://www.mi.uni-hamburg.de/index.php?id=688#1364
https://www.mi.uni-hamburg.de/index.php?id=688#1365
https://www.mi.uni-hamburg.de/index.php?id=688#1365

• The type declaration has to be made in analogy with section A 5 explicitly, and
necessary modules and variables/parameters used in the program unit are to be
explained in analogy with section A 5.

• Comments should be used in the code to easy the reading of the program. The
comment lines have to be marked with a ,,!" in the first column. The first comment
line has only the ,,!". Global comments are marked with ,,!" and local comments are
marked with ,,!" in the second line. The comment itself starts directly behind one
blank following this mark. The comments and therefore this marks have the same
incident as the associated source code (default for emacs use), e.g.:

PROGRAM test
 INTEGER(KIND=ni) :: iii ,ijj ,ikk
 !
 !... loop indices for calculation of mean values
 DO iii = 1_ni,nx
 !
 !... calculation of mean value for u-component
 umean = ujn(iii)
ENDDO
STOP
end PROGRAM test

• All comments have to be in English. The separation of global and local comments may
be of interest for a public version of the code. It may be useful to use only global
comments because they describe the code completely whereas local comments may be
confusing.

• Blank lines are not used! Instead empty comment lines have to be used (some
compilers do not like blank lines.)

• All Fortran key words are written in upcase and all variables, parameter- and method
names have to be written in downcase. Within comments uppercase and lowercase
letters should be used.

This is common in many books and codes. The emacs (Version 19.34 or higher) also
has standard macros for setting keywords in upcase.

• Each line should be continued after no more than 78 columns. Then the code on each
computer platform can be read with every editor software without line breaks.

• Indentations: Below each program unit (program, module, subroutine) the code is
indented by 2 columns.

The code within (DO ,IF) is indented by 3 columns. These are the defaults for emacs
use.

https://www.mi.uni-hamburg.de/index.php?id=688#1364
https://www.mi.uni-hamburg.de/index.php?id=688#1364

• Numbered labels and text output from write statements must start at column 2,
because still printers exits which interpret the first letters as printer commands.

• For continued lines the last character in the line to be continued has to be the ,,&" and
the first character in the intended first column of the following line must be the ,,&". It
is not allowed to write any comments behind the ,,&". The code in the following line
has to be indented at least 3 columns against the first line. The last character of a line
to be continued must not be a ,, , " or a mathematical operator (+ , - , * , /).

This is useful to reduce errors because a ,,*" at the end of a line to be continued and a
,,*" as the first non blank character in the following line means exponentation and not
multiplication!

• Blanks have to be used for a readable code.

Operators (/,*,+,=) have to be surrounded by blanks (<name> * 1.234)
Parentheses must not be separated with blanks from variables.
Associated code has to be written in columns, e.g.:
x = 1.0e0_nr
ydelta = 1000.0e0_nr
wert = 0.1e0_nr

• ENDDO,GOTO,ENDIF have to be written in one word without blanks. All other
keywords have always to be separated by exact one blank (e.g..: END SUBROUTINE
<name>).

• In all program units IMPLICIT NONE must be used.
• Meaningful names have to be created (see section A 3.4).
• Every I/O statement with "IOSTAT=". ,,error=" and ,,end=" must be replaced by

"IOSTAT=" (see section A 4).
• real numbers must not be checked for identity.
• The declaration of all variables and parametes has to be made in the form: (for

classification = is used for space)

<type> ,<attribute>=::=<name>[,<name>,... ,<name>]

• print is not allowed. For all output the standard output WRITE(<unit>,<format>) must
be used. For the report tape (unit 9) it must be used in the form: WRITE (9,...),
because to this unit information is written before input like file names is read.

A 3.4 Name conventions
Names must not be identical with keywords.

a) File names

All file names have always the extention .f90. The names, if possible, should not have more
than 8 characters (DOS is still alive). If a file name exists in METRAS and in MITRAS and
the files contain similar but not identical code (e.g.: oinmet), the file name must use extenions
..._mi.f90, but the method name must be the same (section A 3.4.2).

https://www.mi.uni-hamburg.de/index.php?id=688#1355
https://www.mi.uni-hamburg.de/index.php?id=688#1363

b) Methods

All names may consist of 11 (+ prefix) at maximum and 2 (+ prefix) characters at minimum.

All methods code starts with "METHODE method name" and ends with "END METHODE
method name". The same is valid for do-loops, block if, but the label name is optional.

If the emacs V19.34 or higher is used, it is possible to bind automatically the name behind the
end.

All names must only consist of characters, numbers, underscores. The first 3 characters for the
method names must be the following:

o program-names: first characters are ,,pr_"
o external subroutine-names: first characters are ,,se_"
o internal subroutine-names: first characters are ,,si_"
o external function-names: first characters are ,,fe_"
o internal function-names: first characters are ,,fi_"
o module-names: first characters are ,,mo_"

interface-names: first characters are ,,in_"

c) Rules for names, variables and parameters

The type and status of variables and parameters is given by the first or the first two characters,
respectively (Table A 1). Names for variables and parameters may consist of 11 (+ prefix) and
must consist of 4 (inclusive prefix) characters. Loop indices may consist of 3 characters.

The names should only consist characters, numbers and underscores.

Table A 1: Marks for variables and parameters

Variable Parameter TYPE

global local global local
POINTER me ma mn mi
CHARACTER c

not: cf, cp
d
not: dp

cp dp

INTEGER n
not: np ,ni ,nr

i
not: ip

np ip

LOGICAL l
not: lp

k
not: kp

lp kp

REAL e-h, p-w
not: ep-hp, pp-wp

a,b
not: ap, bp

ep-hp, pp-wp ap,bp

DO-index - j - -
FORMAT cf - -
user defined
data types[4]

xg xl

https://www.mi.uni-hamburg.de/index.php?id=688#1366

A 3.5 Conventions for tape use
The use of the TAPEs is given in the following table:

Table A 2: Tape-Numering

Tape-Nr. purpose
5 Standard- *INPUT*
6 Standard- *OUTPUT*
7 output from pressure solver
8 for control output
9 report tape
10 - 59 additional input files
60 - 99 additional output files
100... additional temporary test files

A 3.6 KIND-Attribute

Each real/integer variable/parameter must be defined with the kind attribute. The kind
attribute is set to nr (double precision) for real, nrs for real (single precision) and ni for
integer values.

These variables are declerated and initialised within the module mo_kind. For logical and
character the default initialisation is used, which is .false. and ,A', respectively. The advantage
of this method is that on all computer platforms the same precision is used. Compiler options
like r8 or i64 are thus not needed.

MODULE mo_kind
 !
 !---
 ! variables for KIND-parameters
 !---
 !
 ! CHANGES:
 ! ========
 ! NAME DATE COMMEND
 ! ---- ---- -------
 ! Sabine 09/10/96 creation
 ! Heiko 20/04/97 ni, nr added; no parameter declaration
 ! Heiko 11/09/00 including nks for single precison real
 ! Tim Gollnik 31/07/02 ni now specified as nr,
 ! Heinke 20/08/02 nr needs to be kind 8, ni kind 4
 ! when compiled with single precision,
 ! otherwise the default functions are
not
 ! on all machines known and libraries
 ! (e.g. plotting) might not read binary

data
 ! Heinke 09/07/03 add save
 ! Heinke 03/01/06 delete obsolete commented lines
 !
 ! METHOD:
 ! =======
 !
 ! LITERATURE
 ! ==========
 ! ---NO---
 !
 !---
 !
 ! USE BY: TYP
 ! ======= ---
 ! MODULE
 !
 ! FILES:
 ! ======
 ! NAME ATTACH
 ! ---- ------
 !
 ! SUBROUTINES:
 ! ============
 ! NAME
 ! ----
 !
 !---
 !
 ! INPUTPARAMETER:
 ! ==================
 ! NAME TYPE COMMENT
 ! ---- ---- -------
 ! ---NONE---
 !
 ! OUTPUTPARAMETER:
 ! ================
 ! NAME TYPE COMMENT
 ! ---- ---- -------
 ! ---NONE---
 !---
 !
 !
 !--- TYPENANWEISUNG MODUL /XKIND/:
 !
 !
 !... Definition of precision parameters
 !
 INTEGER, PARAMETER :: nr = 8
 !
 !... for single precision output:
 INTEGER ,PARAMETER :: nks = 4
 !
 !... for integer kind value is used:
 !
 INTEGER, PARAMETER :: ni = 4
 !
 !
 SAVE
 !
END MODULE mo_kind

A 3.7 INTENT - attribute

The intent attribute is specifying the way of use of formal parameters. This attribute must be
used for subroutine or function declarations if formal parameters are present.

If the intent attribute is given for a variable, additional data, parameter, pointer or save
attributes must not be used.

A 3.8 Modules

The modules contain the declaration of global variables and parameters. The initialisation and
allocation of space for those variables/parameters is made in separate initialisation routines.

Only the modules mo_functions and mo_exception contain executable program code.

The module mo_functions contains all external functions for the model system. The source
code of the functions is located outside the module in single files and is then bound into the
module via include. This facilities the use in other programs like pre- and post-processors.

In the file names_object_f90 on /pf/u/u232015/f90_doc the modules listed are with this
contents.

A 3.9 Exception handling

Error handling should be similar in all parts of the model. The program unit se_errmsg.f90
treats "informative", "warning" and "error"-messages. They are similar in their structure and
are called everywhere in the model system of MITRAS/METRAS in the same way.

A 3.10 Dynamic memory allocation

In Fortran 90 a dynamical memory allocation is used. The advantage is that one executable
code can be used for every domain up to the hardware limits. One problem is that memory
management must be done by the programmer. If allocated memory is not deallocated
explicitly, too much memory is used and the performance will be worse.

For an optimal and transparent use of memory the user must:

• dimension arrays explicitly (e.g.: real a_feld(nx3,nx2,nx1))
• If allocate is used, the memory must be explicitly cleared by deallocate.
• The user must test the performance of allocate and deallocate. For this option the

(de)allocate statements are available.

It must be tested if the memory is really deallocated in case of repeated memory allocation
(e.g. in a subroutine).

A 4. Example program
You can find this file under /pf/u/u232015/rcs/f90_doc on niesel with the file name
pr_example.f90.

PROGRAM pr_example
 !
 !---
 !--- This is an example for a program following the programming
 !--- guidline
 !---
 !
 !
 ! Changes:
 ! ========
 ! Name Date Comment
 ! ---- ---- -------
 ! Heiko 09/07/97 typing of example program
 !
 !---
 ! Method:
 ! =======
 ! In this program it is only intended to show the general
 ! program layout
 !
 !---
 !
 ! Datafiles:
 ! ==========
 ! Name: Attach:
 ! ----- -------
 ! TAPE6 W
 !
 ! Subroutines
 ! ===========
 ! se_intern1
 !
 ! FUNCTIONS:
 ! ==========
 !
 ! MODULE: USE:
 ! ======= ====
 ! mo_kind ni ,nr
 !
 ! Parameter for Subroutine use:
 ! ============================
 ! Name Type Comment
 ! ---- ---- -------
 !

 !
 !---
 !
 USE mo_kind ,ONLY : ni ,nr
 IMPLICIT NONE
 !
 INTEGER(KIND=ni) ,PARAMETER :: iparam1=25 ,iparam2=2 ,iparam3=12
 REAL(KIND=nr) :: windu, windv
 !
 DO jk=1,iparam1
 windu = windv * 2.75e0
 ENDDO
 !
 WRITE(6,*) ' M3TRAS ended'
 !
 STOP
END PROGRAM pr_example
!
CONTAINS
 !
SUBROUTINE si_intern1
 !
 !---
 !--- This is an example for a program following the programming
 !--- guidline
 !---
 !
 !
 ! Changes:
 ! ========
 ! Name Date Comment
 ! ---- ---- -------
 ! Heiko 09/12/91 typing of example program
 !
 !---
 ! Method:
 ! =======
 ! In this subroutine it is only intended to show the general
 ! program layout
 !
 !---
 !
 ! Datafiles:
 ! ==========
 ! Name: Attach:
 ! ----- -------
 !
 !
 ! Subroutines
 ! ===========
 !
 !
 ! FUNCTIONS:
 ! ==========
 !
 ! MODULE: USE:
 ! ======= ====
 ! mo_kind ni ,nr
 ! mo_xpara nx1 ,nx2 ,nx3
 !
 ! Parameter for Subroutine use:
 ! ============================
 ! Name Type Comment

 ! ---- ---- -------
 !
 !
 !---
 !
 USE mo_kind ,ONLY : ni ,nr
 USE mo_xpara ,ONLY : nx1 ,nx2 ,nx3
 !
 IMPLICIT NONE
 !
 INTEGER(KIND=ni) :: iii ,ijj ,ikk
 !
 DO ikk = 1,nx3
 DO ijj = 1,nx2
 DO iii = 1,nx1
 u0(ikk,ijj,iii) = 12.03e0 + ujn(ikk,ijj,iii-3)
 ENDDO
 ENDDO
 ENDDO
 !
 RETURN
END SUBROUTINE si_intern1

A 5. References

[1] B. und R. Wojcieszynski, 1993:
Fortran 90; Programmieren mit dem neuen Standard: Addison Wesley

[2] D. Rabenstein, 1995:
Fortran 90, Lehrbuch: Hanser

[3] Fortran90 -Ein Nachschlagewerk, 1993
RRZN (Regionales Rechenzentrum für Niedersachsen/Universität Hannover, 2. Auflage

[4] Europäische Wetterdienste, 1996:
Europeanstandards for writing and documenting exchangeable Fortran 90 code,Version 1.1
[5] Wosik, J., H. Schlünzen, K. Bigalke, 1992

PROTOOL: EinSource-Code-Verwaltungs-System auf Basis von RCS unter UNIX;
InternerBericht, Meteorologisches Institut, Universität Hamburg

[0] Libnames are changed for large updates. A list of available libraries is:
/pf/u/u232015/res/info_versions
[1] lib can be: 1d, 3d, gen, emi.
[2] Does not exist in METRAS and is not allowed for batch use.
[3] The calling program is continued with a statement order different than the normal
corresponding statement.
[4] This data type is only allowed to be used if the compiler can optimise it or if no
mathematics is done.

Part B - Coding rules - short form for MeMi
model system
B 1. General rules:

programming language Standard Fortran 90
line length max. 78 columns

Extension of files .f90 or _mi.f90 (if seperate routine exists for
MITRAS)

program units if possible below 50 lines of executable code
starting with,,!"; indent like associated code
first line only ,,!"
global comments in second and following lines
marked with ,,!--- "
local comments in second and following lines marked
with ,,!... "
all comments indented as associated code (default in
emacs)

comments

all comments in English
blanc lines not allowed ==> blank comment lines(,,!")
for all units IMPLICIT NONE

KIND-attribute
LOGICAL and CHARACTER: default values
INTEGER-variables and parameter KIND =ni
REAL-Variables and parameter KIND =nr

REAL constants always in exponential form: 1015.00e0_nr
DIMENSION-attribute not allowed
names self describing names
Fortran keywords upcase
variables and parameter downcase
MODULE USE <modulename> , ONLY : <var>[<,var>< ,var>]
more than one statement per line not allowed (no ,, ; ")
code block (DO, DO WHILE, block
IF, CASE, INTERFACE etc.) indent: 3 columns

last character of line to be continued must be ,,&"
indent of code: 3 columns at minimum
first character of continuation line must be ,,&" in
intended column, blank thereafter continuation lines

,, , " or mathematical operator (+,-,*,/) are not allowed
as the last character of line to be continued

Blanks use them!
operators must be surrounded by exactly one blank

in front of a parenthesis blanks must not be used
blank behind comma is not allowed

READ always with ,,IOSTAT=" and handling of exceptions

END
ENDDO, ENDIF, GOTO must be written together
(no blanks)
others: END keyword (e.g..: END SUBROUTINE)

Arrays dimension always explicit
(e.g..: REAL (KIND=nr) a_feld(nx3,nx2,nx1))

functions with side effects not allowed
REAL values must not be checked for identity(not allowed: EQ)
PRINT must not be used; use instead: WRITE (6,*)
declarations <Type> ,<Attribute> :: <name>[,<name>... ,<name>]

user defined data types use only if optimization is possible or no mathematics
is done!

INTERFACE all necessary INTERFACEs put in a few MODULE
s

INTENT use for all keyword parameters

B 2. Conventions for names
o If in METRAS and MITRAS the same routines exist with different code, the

MITRAS code must have the extension _mi.f90 for the file names but must not
have any more differences in the name.

o names must not be the same as keywords.
o all methods start with "<methode> method name" and end with "END

<methode> method name". The same is valid for DO-Loops, Block IF etc., but
the label is optional.

o names for methods may consist of a maximum of 11 (+ prefix) and a minimum
of 2 (+ prefix) characters.

o The type and status of the variable or parameter is defined by the prefix.
o names for variables and parameters may consist of 11 (incl. prefix) and must

consist of at least 4 (incl. prefix) characters. Loop variables may only have 3
characters.<!--StartFragment -->

Table B 1: First character for variables and parameters.

Variable Parameter TYPE
global local global local

POINTER me ma mn mi
CHARACTER c

not: cf, cp
d
not: dp

cp dp

INTEGER n
not: np ,ni ,nr

i
not: ip

np ip

LOGICAL l
not: lp

k
not: kp

lp kp

REAL e-h, p-w
not: ep-hp, pp-wp

a,b
not: ap, bp

ep-hp, pp-wp ap,bp

DO-index - j - -
FORMAT cf - -
user defined
data types[4]

xg xl

Table B 2: Prefix for methods.

Methods prefix

PROGRAM pr_

external
SUBROUTINE

se_

internal
SUBROUTINE

si_

external
FUNCTION

fe_

internal
FUNCTION

fi_ (old
: o)

MODULE mo_

INTERFACE in_

B 3. Rules for the labels
Numeric labels have been disallowed, instead:

Statement Label/ Structure without
Label

STOP (error)
ERROR (read)
END (read)

use IOSTAT and exception
handling

CASE, IF, DO WHILE,
EXIT, CYCLE

names for labels

Labelled DO names for labels
FORMAT CHARACTER-Parameter

B 4. Conventions for tape use

Tape-Nr. purpose

http://www.mi.uni-hamburg.de/index.php?id=688#1366

5 Standard- *INPUT*
6 Standard- *OUTPUT*
7 output from pressure solver
8 for control output
9 report tape
10 - 59 additional input files
60 - 99 additional output files
100... additional temporary test files

Part C - Documentation rules for the MeMi
model system
C 1. Preface
Only few proposals were made concerning the documentation of meteorological computer
programs. In 1994 the Model Evaluation Group (MEG) of the European Communities
released ,,guidelines for model developers" [1] and the ,,model evaluation protocol" [2] . The
guideline on "Evaluation for flow around buildings and obstacles" for prognostic microscale
wind field models [3] includes some recommendations. A more general guideline for
documentation of software products was published in 1980 by the German DIN Institute [4]
in form of DIN 66230-1980.

Following the presented specifications, a main requirement of a model documentation is its
completeness. The documentation must be up to date and readable for each user. The
documentation of software products and thus for numerical models may be split into two
categories: The external documentation outside the code and the internal documentation
inside the code.

C 2. General specifications
For the MeMi model ystem the documentation is divided into external and internal
documentation. The whole documentation has to be written in English. The external model
documentation is consistant with VDI 3783-9 [3].

The following sections specify the documentation structure in detail . The important points to
be regarded by the source code developer are mentioned.

C 2.1 External Documentation
For practical use the external documentation is split into three parts: Brief Description,
Detailed Documentation and User Manual. The main topics of the external model
documentation package are the description of the model and description of data sets used for
the development of the code (e.g. for numerical constants). A scientific evaluation of the
model has also to be given.

a) Brief description

 This description is different for every model of the MeMi model

 System (METRAS,MITRAS,MECTM,MICTM)

1. model name, version number, date of present model publication.
2. publisher, contact person
3. field of application
4. limits of application

http://www.mi.uni-hamburg.de/Part_C_Documentation_rules_for_the_MeMi_model_sy.690.0.html#m1
http://www.mi.uni-hamburg.de/Part_C_Documentation_rules_for_the_MeMi_model_sy.690.0.html#m2
http://www.mi.uni-hamburg.de/Part_C_Documentation_rules_for_the_MeMi_model_sy.690.0.html#1392
http://www.mi.uni-hamburg.de/Part_C_Documentation_rules_for_the_MeMi_model_sy.690.0.html#m3
http://www.mi.uni-hamburg.de/Part_C_Documentation_rules_for_the_MeMi_model_sy.690.0.html#1392

5. area size, model resolution
6. permissible expansions of grid width
7. solution patterns
8. input parameters, output parameters
9. validationion and evaluation
10. hardware and software requirements of the programme
11. availability
12. group of users
13. bibliography

b.) Detailed Description

The detailed description of the model should answer detailed questions about the model and
the used programming code. The task, basic equations, approximations, parameterisations as
well as the boundary conditions have to be discussed in detail. The data used for calibrations
have to be mentioned, and the quality of the used data sets for calibration has to be evaluated.
All units used within the model, especially within chemical reaction parts, input data sets and
output datasets, have to be listed. The solution technique and initialisation shall be described
in detail. Instructions on how to interpolate in detail. Instrucions on how to interpolate the
model results into grid points which have not been used in the model shall be provided. The
validation and evaluation of the model with an explanation of used data sets have to be fully
discribed. This description is different for every model of the MeMi model System
(METRAS, MITRAS, MECTM, MICTM).

The table of content of this detailed description is:

1. Task
2. Basic equations
3. Approximations
4. Parameterisations
5. Boundary conditions
6. Numerical treatment
7. Nesting
8. Initialisation
9. Data sets used for calibration of the model
10. Units
11. Validation and evaluation
12. Limitations
13. References

c.) User Manual

The user manual , is developed to give the user all necessary information to get easily started.
This documentation jans all MEMI modells. It shall ensure that same meaning are troughout
all models of the MEMI model system.

Its content is:

1. Outline of MEMI model system
2. a.) Installation procedure b.) User interface
3. Hard- and software requirements
4. Interruption and restart features
5. Used programming language (standards)
6. Error messages
7. Data input
8. Implemented boundary conditions
9. Names of species and reaction systems
10. Table of global variables
11. Table of constants including their value and unit
12. Data - flow diagram
13. Funktional diagram (calling tree)
14. Data output
15. Application example

The global variables have to be explained. The structure of the ASCII file is given in Table A
3. You can find the associated TeX-file under /pf/u/u232015/rcs/f90_doc on niesel at DKRZ
with the file name names_varpar_f90.tex.

<>
Table C 1: Structure of the ASCII-file for documentation of global variables
variable defined in module symbol in model description short

explanation

What has the developer to do for external documentation ?

The developer of new or changed code has to make an external description of the new method
used, the input and output values (structure numbers and variable names) and documentation
of validation runs. References have to be given for the description of the used method. For
validation detailed information about the target value, initialisation data sets, data sets for
comparisons, analytical solutions, processes studied and references have to be given, too. The
result should state if the data set, analytic solution, or sensitivity parameters are useful for
a model validation with respect to the chosen strategy.

In addition, for the detailed description a description of new equations, new approximations,
parameterisations, boundary conditions, numerical treatment etc. have to be given.

http://www.mi.uni-hamburg.de/Part_A_Detailed_description_of_the_coding_rules.688.0.html#table-a3
http://www.mi.uni-hamburg.de/Part_A_Detailed_description_of_the_coding_rules.688.0.html#table-a3

For the third part of external documentation the user interface, data input and output with
information on units, error messages, global variables and calling tree must be given. Please
note that the documentation has to be written in TEX and priviede in digital form.

C 2.2 Internal documentation
Documentation must be available also (see Section A4) within the code. The header of each
program unit gives information about the history of development (different users who made
changes and the kind of changes). Also the method used should be described shortly and
references have to be given. Global comments (!---) within the executable code have to
explain the code for external users wheras local comments (!...) should address programming
issues.

What has the developer to do for internal documentation ?

Use comments ! Put the header given in section A 4 in each program unit and describe the
specific method used and the task of the unit as well as the necessary data files, other program
units and local variables.

Explain the structure of the code to each user with global, and in addition local comments and
give the units used in your equations. If complex Fortran structures are used, please make
them clear with local comments.

C 3. References
[1] Guidelines for model developers; Model Evaluation Group; 1994
European communities, Directorate-general XII, science research and development

[2] Model evaluation protocol; Model Evaluation Group; 1994
European communities, Directorate-general XII, science research and development

[3] Verein Deutscher Ingenieure (2005): Environmental Meteorology: Prognostic microscale
eind field model-Evaluation for flow around buildings and obstacles VDI 3738, Part 9;
Komission Reinhaltung der Luft im VDI und DIN, Beuth Verlag GmbH, Berlin, Germany

[4] DIN 66230 - 1980[4] A.Ebel, E. Schaller, K.K. Schlünzen; 1997:
Evaluierungsstrategie für Chemie-Transport-Modell-Systeme im TFS-LT1; in Vorbereitung

http://www.mi.uni-hamburg.de/Part_A_Detailed_description_of_the_coding_rules.688.0.html#1364
http://www.mi.uni-hamburg.de/Part_A_Detailed_description_of_the_coding_rules.688.0.html#1364

	
	
	
	
	
	
	Memi Technical Report 1
	
	
	
	
	
	
	
	
	K. Heinke Schlünzen (2006)
	 Part A - Detailed description of the coding rules for the MeMi model system
	A 1. Motivation
	A 2. The Fortran 90 standard
	A.3 Coding Rules
	A 3.1 Language
	A 3.2 Elements not being used
	A 3.3 General source code form
	A 3.4 Name conventions
	a) File names
	b) Methods
	c) Rules for names, variables and parameters

	A 3.5 Conventions for tape use
	A 3.6 KIND-Attribute
	A 3.7 INTENT - attribute
	A 3.8 Modules
	A 3.9 Exception handling
	A 3.10 Dynamic memory allocation
	A 4. Example program
	A 5. References
	 Part B - Coding rules - short form for MeMi model system
	B 1. General rules:
	B 2. Conventions for names
	B 3. Rules for the labels
	Numeric labels have been disallowed, instead:
	B 4. Conventions for tape use

	Part C - Documentation rules for the MeMi model system
	C 1. Preface
	C 2. General specifications
	C 2.1 External Documentation
	What has the developer to do for external documentation ?

	C 2.2 Internal documentation
	What has the developer to do for internal documentation ?

	C 3. References

