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Abstract

Radar measurements are attenuated significantly, especially at short wavelengths, e.g.
X-band and K-band. For the intersecting observations of weather radars operated in a
networked environment, a novel retrieval method for reflectivity and specific attenuation
estimates is developed. The retrieval method derives an linear system of equations
(LSE) based on the observed radar reflectivities considered as tomographic problem.
A major advantage of this LSE-method is the independence of explicit constraints, like
statistical relations of the k-Z-relation.
The retrieval algorithm is tested using synthetic weather radar data to prove the

validity and sensitivity of the method. The sensitivity of the LSE-method is discussed
for several uncertainties: local perturbations, noise, missing values, biases, different
number of radars, and strong attenuation. Especially a noise significant greater than the
specific attenuation and biases between the observed reflectivities corrupt the retrieval’s
solution. Nevertheless, the LSE-method is found to be applicable to synthetic data of
weather radar networks considering the underlying assumptions of the observations and
methodology.
The application of the LSE-method on real radar data shows inconsistency to the

theoretical assumptions. The real observations are provided by several single polarised
X-band weather radars operated in a unique network design. The spacious measure-
ments of the networked radars are incomparable. The scanning strategy and vertical
inhomogeneity of the reflectivity lead to different simultaneous reflectivities. Consis-
tently, the application of the LSE-method to retrieve reflectivity and specific attenua-
tion is constrained to a weather radar network operating at zero elevation or connecting
lines. Additionally, ground clutter and strong attenuation causes missing values in the
observations leading to the underestimation of the path integrated attenuation.
However, the fundamental analysis of the presented method to retrieve reflectivity

and specific attenuation in a weather radar network proves its theoretical validity.
Nevertheless, further research on attenuation correction schemes for weather radars
operating at small wavelengths and in networks is needed.
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Kurzfassung

Insbesondere bei kurzen Wellenlängen, z.B. X- und K-Band, werden Messungen der
Radarreflektivität signifikant durch Flüssigwasser gedämpft. Aus den sich überschnei-
denden Beobachtungen von mehreren Wetterradaren wird ein neues Verfahren zur
Bestimmung der spezifischen Dämpfung und somit einer Korrektur der Radarreflek-
tivität entwickelt. Die Methode leitet ein lineares Gleichungssystem (LSE) aus den
beobachteten Reflektivitäten der Radare her. Der Vorteile der LSE-Methode ist die
Unabhängigkeit von Einschränkungen, wie die statistischen Zusammenhängen einer k-
Z-Beziehung.

Das Verfahren zur Ableitung der spezifischen Dämpfung und wahren Reflektivität
wird anhand synthetischer Wetterradardaten getestet, wodurch die allgemeine Gültigkeit
und Sensitivität der Methode gezeigt werden. Die Sensitivität der LSE-Methode wird
für verschiedene Unsicherheiten diskutiert: lokale Störungen, Rauschen, fehlendeWerte,
Bias, Anzahl der Radare und starke Dämpfung. Das Ergebnis der Methode wird ins-
besondere durch Rauschen gestört, das in der Größenordnung signifikant größer als
die Werte der spezifischen Dämpfung ist. Unterschiedliche Beobachtungen, durch
beispielsweise einen Bias in der Kalibration, führen ebenfalls zu einer instabilen Lö-
sung. Unter Beachtung der Annahmen der Beobachtungen und der Methodik, führt
die LSE-Methode zu einer robusten Abschätzung der Radarreflektivität und spezifis-
chen Dämpfung.

Die Anwendung der LSE-Methode auf reale Radardaten zeigt widersprüchliche Ergeb-
nisse zu den theoretischen Annahmen. Die realen Daten basieren auf den Beobach-
tungen eines Niederschlagsereignisses von mehreren einfach-polarisierten X-Band Wet-
terradaren in einem einzigartigen Netzwerkaufbau. Die großflächigen Messungen der
Radare im Netzwerk sind jedoch nicht vergleichbar. Die Messstrategie und vertikale
Inhomogenität der Radarreflektivität führt zu verschiedenen beobachteten Reflektiv-
itäten für gleiche Standorte. Die LSE-Methode lässt sich folglich nur für horizontal
messende Wetterradare anwenden. Nicht-meteorologische Echos und starke Dämpfung
verursachen zudem fehlende Beobachtungswerte.

Die grundlegende Analyse der vorgestellten Methode zur Ableitung der ungedämpften
Radarreflektivität und spezifischen Dämpfung aus Beobachtungen eines Wetterradar-
netzwerks zeigt die theoretische Gültigkeit. Die vertikale Variabilität der physikalischen
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Eigenschaften und Messungenauigkeiten verhindern die praktische Anwendung. Die
Zukunft erfordert weitere Forschung im Bereich der Dämpfungskorrekturen für Wet-
terradare, die in kurzen Wellenlängen messen und in Netzwerken eingesetzt werden.
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1 Introduction

High resolution weather radars are mandatory for spacious precipitation estimates
needed in several meteorological and hydrological applications at small scales. The
increase in extreme rainfall events due to climate change drives the development in
urban hydrological models, which demand high quality and resolution inputs (Thorn-
dahl et al., 2017). Conventional weather radar systems, operating at S- and C-band
frequencies, are able to provide reflectivity measurements over large domains, but are
limited in temporal resolution of several minutes and spatial resolution of a few hun-
dred meters. However, different hydrological applications demand at least a temporal
resolution of 1 min and spatial resolution of 100 m (Einfalt, 2003; Ochoa-Rodriguez et
al., 2015; Thorndahl et al., 2017). With smaller wavelengths, for example at X-band
frequencies, a weather radar has a beneficial gain in sensitivity of the signal and reso-
lution, but suffers from attenuation by water significantly. This effect of attenuation is
neglibile at wavelengths in the S-band range. In general the knowledge of attenuation
is important for two reasons. First, the specific attenuation k is used to correct the
measured radar reflectivity Z. The retrieval of intrinsic reflectivity is a prerequisite for
rain rate R estimates, especially in heavy rain events. Second, the knowledge of specific
attenuation is useful at its own since the rain rate can be estimated directly from this
property using so-called k-R relationships (Doviak and Zrnić, 1993). The attenuation
of microwaves by rain has been discussed and used for nearly seven decades (Atlas and
Banks, 1951; Atlas and Ulbrich, 1977; Austin, 1947; Gunn and East, 1954; Wexler and
Atlas, 1963; to mention some of the earliest).

As attenuation is known as essential problem for radar measurements, there is a
wealth of techniques and algorithms to correct the effect of attenuation. Initially,
Hitschfeld and Bordan (1954) derived an analytical function for the rain rate depend-
ing on the observed signal power using familiar Z-R and k-R relations as attenuation
correction. The application of this scheme is limited due to its dependencies and the
sensitivity to calibration errors. Therefore, Hildebrand (1978) enhanced the analytical
function by an iterative solution for attenuation correction restricted to an attenuation
underestimation. Both algorithms get unstable for small errors and increasing path-
integrated attenuation (PIA) (Delrieu et al., 1999; Peters et al., 2010). The schemes
are improved by constraints of the PIA to avoid the overestimation of attenuation due
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1 Introduction

to instability (Delrieu et al., 1999; Marzoug and Amayenc, 1991; Nicol and Austin,
2003). Further, dual-polarised radars improve data quality by estimating the attenu-
ation through using the differential phase (Feng et al., 2016), but single-polarisation
systems are preferred because of their low costs. In summary, attenuation correction
schemes for single radars are limited in applicability especially for strong rain events.

As most weather radars are used in nationwide, large or local networks they provide
more coverage and can improve the rain estimate with different observations about
overlapping areas. The supplementary use of X-band weather radar systems to con-
ventional weather radar networks at local scales, i.e. urban areas, has been tested at
different sites (Antonini et al., 2017; Chandrasekar et al., 2018; Cifelli et al., 2018;
Lengfeld et al., 2014; Van de Beek et al., 2010). Multiple observations by different
radars are used to improve the rain estimate. For example, Lengfeld et al. (2016) in-
troduced a method to correct reflectivity measurements of weather radars operating in
attenuation-influenced frequency bands using observations from less attenuated radars.
A different way to increase the accuracy of the corrected reflectivity is using C-band
radar observations to restrict familiar single radar attenuation corrections of X-band
radar measurements (Lengfeld et al., 2018). For weather radars operating at the same
frequency band, Testud and Amayenc (1989) presented an attenuation retrieval using
two radars observing a common volume. Since the concept is based on a second-order
differential equation, it is highly sensitive to noise of the measured variables. With an
improved formulation of this differential equation, the attenuation correction was ap-
plied for measurements at same level performed during several flights with a dual-beam
airborne Doppler radar including an independent evaluation with ground based radar
measurements (Kabèche and Testud, 1995). Srivastava and Tian (1996) discussed a
dual-radar method of measuring specific attenuation at virtually the same wavelength
with an analytical solution. The technique was successfully applied to C-band obser-
vations (Tian and Srivastava, 1997), but this study lacks independent measurements
of specific attenuation to verify the validity of the retrievals. Chandrasekar and Lim
(2008) proposed an iterative methodology for reflectivity and specific attenuation re-
trievals in a networked radar environment. The method is based on the solution of the
specific attenuation distribution by the integral equation for the reflectivity factor. The
network-based attenuation correction algorithm works robustly for simulated X-band
observations by using a S-band radar (Chandrasekar and Lim, 2008) and real X-band
radar observations (Lim et al., 2011). Disadvantages of the method are the compu-
tationally intensive solution and a required parameter of the Z-k relation. The most
recent method related to the retrieval of specific attenuation by multiple radar obser-
vations, presented by Shimamura et al. (2016), is based on the maximum likelihood
estimation for the solution of the analytical function by Hitschfeld and Bordan (1954).
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Overall, research on attenuation correction schemes for weather radars operating at
small wavelengths has not yet been completed.
Several studies show the capability of weather radar networks improving rain esti-

mates (Lengfeld et al., 2018, 2016; Lim et al., 2011; Shimamura et al., 2016). As weather
radar networks provide multiple information about same measuring volumes, they can
overcome the drawback of attenuation. Therefore, the project Precipitation and At-
tenuation Estimates from a High-Resolution Weather Radar Network (PATTERN)
provided a well-grounded testbed for research on high-resolution weather radar mea-
surements (Lengfeld et al., 2014). The integrated X-band weather radars provide years
of measurements. The network design promotes the idea of a networked approach to
correct the influence of attenuation.
This thesis encompasses the development and exploration of a novel retrieval method

for reflectivity and specific attenuation estimates in weather radar networks. The focus
is on observations by short wave, single polarised weather radars in an unique net-
work design, as described in Chapter 2. The networked observations are considered
as a tomographic problem. To introduce the theoretical framework for a novel net-
worked based retrieval method in Chapter 3, the theoretical background of attenuation
is given in Chapter 2. Experimentation on synthetic weather radar data demonstrates
assets and drawbacks of the retrieval method in Chapter 4. Finally, the usability of
this method is discussed using real weather radar data (Chap. 5). The potential and
limitations of the presented retrieval method is summarised in Chapter 6.
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2 Background

In general, a weather radar transmits microwaves, which are partially backscattered by
hydrometeors, e.g. cloud droplets, raindrops, snowflakes, and hailstones. The reflec-
tivity, as the result of this backscattered signal, is affected by attenuation, in part very
significant depending on the wavelength (Sec. 2.2). A setup of multiple radars operated
in a networked environment provides not simply measurements over long ranges but
can also overcome the drawback of attenuation (Sec. 2.1).
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Figure 2.1: Sketch of a radar network observing the same volume.

2.1 Weather Radar Network

A weather radar network, consisting of two or more radar systems, provides multi-
ple information about the same measuring volume characterised by one raindrop size
distribution (DSD), describing the microphysical properties of the rain medium. The
observed reflectivities on common volumes are distinct due to the different propagation
paths of the signals by each radar (Fig. 2.1). Each radar beam is affected by a vari-
ety of different specific attenuations due to an inhomogeneous rain field, leading to a
radar dependent PIA. Nevertheless, one volume has one intrinsic reflectivity and spe-
cific attenuation. Even though the radar beams just intersect in parts, these multiple
observations can be used to improve the rain estimate.

Within the project’s framework of PATTERN, a weather radar network had been
set up with the aim to overcome the drawback of attenuation and improve accurate
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2 Background

Figure 2.2: Map of weather radar network PATTERN (Lengfeld et al., 2014).

quantitative precipitation estimates (Lengfeld et al., 2014). The network consists of four
X-band radars, three Micro Rain Radars (MRRs) and several rain gauges. The setup
was located in the north of Hamburg, Germany (Fig. 2.2). Supplementary, the whole
radar network is covered by observations of the C-band Doppler radar in Boostedt of the
Deutscher Wetterdienst (DWD). Each X-band radar has a maximum range of 20 km,
a range resolution of 60 m and a time resolution of 30 s. The radars, Hungriger Wolf
Tower (HWT), Bekmünde (BKM), Moordorf (MOD), and Quarnstedt (QNS), span an
observed region of approximately 60 km × 80 km. The radar systems are modified
ship navigation radars with 25 kW transmit power, a frequency of 9410 MHz (X-band
frequency range is 8−12 GHz), a pulse width of 0.4µs and a pulse repetition frequency
of 800 Hz. Each radar has a sampling resolution of 1◦ in azimuth and operates with
an elevation angle of roughly 3◦ (Burgemeister, 2018). For further technical details see
Lengfeld et al. (2014).

Although the X-band radars are single polarised and thus they lack of polarimetry
added-values, the radars provide benefit from the advantages of low costs and the other
X-band and vertical pointing MRRs, or more exactly the networked setup. The unique
character of this network is worth emphasising because the horizontal distance of any
two radars does not exceed 16 km. As a result, the radar observations overlap in the
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2.2 Attenuation

full propagation paths of the radar beam, even though in different heights. This con-
dition is also fulfilled for a network of three out of four radars. The overlap of the
PATTERN weather radar observations is greater in percentage terms compared to the
nationwide C-band network by the DWD. With this network and an appropriate ap-
proach the multiple information from different radars can be used to retrieve reflectivity
and attenuation in certain grid cells.

For the network within PATTERN, several attenuation correction approaches us-
ing different radars have been tested. Note that, attenuation effects due to a wet
radome during rain events are minimised with the cylindrical shape of the X-band
radar’s radome because water runs off quickly (Lengfeld et al., 2014). Peters et al.
(2010) introduced a spectral attenuation correction for the MRR based on the scheme
by Hitschfeld and Bordan (1954). Attenuated X-band radar’s measurements are suc-
cessfully corrected for a single case by Lengfeld et al. (2014) using the single radar at-
tenuation correction scheme by Delrieu et al. (1999) with a constrained PIA and fixed
parameters. The attenuation is estimated along the path of undisturbed radar mea-
surements. Data gaps due to clutter removal are filled by interpolation or, if possible,
by multiple radar information in overlapping areas. Additionally, within PATTERN
Lengfeld et al. (2016) proposed a method to correct attenuation-influenced radar ob-
servations with by less attenuated radar observations. The attenuation of the X-band
radar observations are corrected with the measurements of C-band radars by using
an isotonic regression applied on the ratio between these measurements. This method
and five more attenuation correction methods are examined and compared by Lengfeld
et al. (2018). Despite all attenuation correction methods lead to improvements, single
radar schemes tend to instabilities. Additionally, the dual radar (X- and C-band radar)
scheme is uncertain in terms of different time resolutions (30 s to 5 min) and unknown
differences due to different beam heights.

As the goal of this thesis is a retrieval of reflectivity and attenuation in a weather
radar network, discussed ideas of a theoretical and the real weather radar network
(PATTERN) are considered. To develop the network based retrieval, some thoughts
about attenuation are given in Section 2.2.

2.2 Attenuation

The scattering and absorption of the emitted and reflected electromagnetic wave propa-
gating in precipitation is called attenuation. The power loss of the backscattered signal
due to attenuation leads to strongly underestimated reflectivities and thus rain esti-
mates. The attenuation at short wavelengths, e.g. at X-band, can be 100 times larger
than at longer wavelengths, like S-band, where attenuation can be approximately ne-
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2 Background

glected (Doviak and Zrnić, 1993). The effect of attenuation increases with strong rain
and at long ranges. Due to this cumulative characteristic of attenuation, observations
from multiple sites measure different reflectivities, which leads to different rain esti-
mates. Therefore, an attenuation correction for the radars described in Section 2.1 is
mandatory. To introduce the retrieval method in Chapter 3, a brief overview about
important radar quantities is given.

The measured logarithmic radar reflectivity Z ′ at range r suffers from attenuation
integrated over the path, neglecting noise and non-meteorological echoes (clutter),

Z ′(r) = Z(r)− 2
∫ r

0
k(s) ds (2.1)

where Z(r) is the intrinsic logarithmic radar reflectivity at range r and k(s) is the
specific attenuation of each range bin. The integral in Equation 2.1 is also known as
PIA.

The intrinsic linear radar reflectivity z in the unit of mm6m−3 can be expressed at
any range bin r as a function of the DSD N(D, r) and the drop size itself D:

z(r) =
∫ ∞

0
N(D, r)D6 dD. (2.2)

The units of the linear radar reflectivity z in mm6m−3 is transferred to the logarithmic
radar reflectivity Z in dBZ using

Z = 10 · log10(Z
z0

) (2.3)

where z0 = 1 mm6m−3. Unless otherwise stated, for simplicity, the logarithmic radar
reflectivity is expressed as radar reflectivity in the following.

The formulation for the specific rain attenuation k in the unit of dB m−1 can be
expressed similar to the radar reflectivity (Eq. 2.2)

k(r) = 4.34 · 10−3
∫ ∞

0
N(D, r)σe(D) dD (2.4)

where N(D, r) is the DSD and σe is the extinction cross section, which is dependent
on the wavelength. To obtain the wanted rain estimates, the linear radar reflectivity z
has to be converted into a rain rate R, usually by assuming a power law z = aRb. The
issue is that the coefficients a and b are not constant in space and time and depend on
e.g. the type of precipitation (Berne and Krajewski, 2013). For a further description
of radar background refer to standard literature, e.g. Doviak and Zrnić (1993).

As the radars described in Section 2.1 are simple backscatter systems and cannot
observe Doppler shift or perform polarimetric measurements (Lengfeld et al., 2014),
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2.2 Attenuation

they provide only the radar reflectivity. For this reason, a retrieval method based on
Equation 2.1 without using microphysical properties of the rain medium, like the DSD,
is presented in Chapter 3.
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3 Linear System of Equations Method for
a Network Based Retrieval - Theory

The basis of any networked retrieval method for attenuation and reflectivity is to ob-
serve common volumes. Imagine a hypothetical radar network observing same areas at
different radar sites simultaneous (Fig. 2.1). The measurements are considered to be in
a plane, so connecting lines and intersecting volumes are extensively possible (Fig. 3.1).
The vertical microphysical properties of the precipitating area are assumed to be ap-
proximately constant or the elevation angle of the radars nearly zero. The hypothetical
radars are operating at the same frequency band. The radar beam is considered as a
pencil beam after the correction of power loss due to a beam expansion effect. The
geometry is simplified to neglect a mismatch in range resolution volume and point-
ing regarding overlapping measurements by different radars, hence the measurements
are discretised on same grid nodes. In absence of attenuation, the measured radar
reflectivity is assumed to be the same for common nodes. Nevertheless, the observa-
tion of intrinsic reflectivity for a common node is distinct due to different integrated
attenuation along the paths from each radars and additional uncertainties.
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Figure 3.1: Idealised set up of a radar network along connecting lines consisting of two
radars A and B.

The methodology for the following network based retrieval of attenuation and reflec-
tivity is based on a linear system of equations (LSE) derived from Equation 2.2, which

11



3 Method for Network Based Retrieval

relates the measured reflectivity Z ′, the intrinsic reflectivity Z and the specific atten-
uation k integrated over the beam path. As the observations are available on a radial
grid with its centre in each radar location, the measurements have to be interpolated
on the same regular grid nodes, e.g. of Cartesian coordinates. Therefore, Equation 2.2
has to be discretised according to the selected grid to describe the propagated beam
path. The radar forward operator is used for the discretisation, which is described in
Section 3.1. The general methodology of the retrieval method, the LSE, is introduced
in Section 3.2. Schemes to solve the LSE are discussed in Section 3.3.

3.1 Radar Forward Operator

The radar forward operator simulates the observed logarithmic reflectivity Z ′ for a
given spatial distribution of intrinsic logarithmic reflectivity Z and specific attenuation
k. All fields, for instance Z ′, are discretised by a basis function. This approach is
inspired by the finite element method. Consider N nodes of {Pi : 1 ≤ i ≤ N} inside
the two-dimensional model domain with a triangulation consisting of four triangles per
node (Fig. 3.2a). This nodal basis φi is given by a function, which varies linearly within
each triangle and fulfils

{ϕi : ϕi(Pj) = δij} (3.1)

with the Kronecker delta δij . A hypothetical field x is then discretised by these elements
ϕi:

x(~r) = xiϕi(~r) (3.2)

with the scalar coefficients xi, which are easily determined by the relation x(Pi) = xi.
To shorten the notation, the nodal coefficients xi are summarised into the vector ~x =
(x1, ..., xN ). It is straightforward to restrict the model to one dimension for studies of
anti-axially looking radars (Fig. 3.1), by replacing the triangulation with an intersection
of the connecting line into intervals (Fig. 3.2b).

Following the defined notation, the measured reflectivity Z ′ = (Z ′(x1), ..., Z ′(xN )) of
the indicated radar in Figure 3.2 is computed following Equation 2.2:

~Z ′ = ~Z − 2 B~k (3.3)

with the discretised intrinsic radar reflectivity ~Z, the specific attenuation ~k and a
beam matrix B. The beam matrix B describes the geometry of the radar beam and is
therefore time independent. The elements B(i, j) of the matrix are calculated integrally
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3.1 Radar Forward Operator

Pj
ϕj

Pi

B(i, j)

y

x

(a)

ϕ1 ϕ2 ϕ3 ϕ4

P1 P2 P3 P4

ϕ

x

(b)

Figure 3.2: Discretisation of horizontal, two-dimensional (a) and one-dimensional (b)
fields using nodal basis functions. The nodes are indicated by the dots P
and the basis function is denoted by the functions ϕ, which is in (a) the
shaded area.

over the nodal basis functions φj :

B(i, j) = li
ci

∫ Pi

L0
ϕj ds (3.4)

li =
∫ Pi

L0
ds, ci =

∑

j

B(i, j) (3.5)

within the path ([s] = m) between the radar location L0 and the directed node Pi. The
beam matrix is of dimension N xN . The values of the line integrals are standardised by
ci with the sum of the weights affecting the beam path and by li with the length of the
beam path (see Eq. 3.4 and 3.5). This normalisation is required due to a discretisation
error, which is indicated in Figure 3.3. For the case that the radar beam is parallel to the
nodes, the normalisation changes nothing. The integral of the basis functions φi over the
full path s results in the path length due to the intersection of the functions (Fig. 3.2b).
The normalisation becomes essential for a radar beam, which is nonparallel to the nodes,
as the line integral of the basis functions would not maintain the propagated beam path.
A diagonal beam according the node results with its line integral of φi in a discretisation
error with a factor of the square root of two. In this case, the weight functions are
separated (Fig. 3.3). Note, if the finite element method is applied, the discretisation
error will be minimised by variation of the basis function with each node. However,
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3 Method for Network Based Retrieval

the finite element method was not applied by this approach. The normalisation with
Equation 3.5 resolves this issue. On the bottom line of the discretisation, the entries
of the beam matrix are just the scaled lengths of the ray paths corresponding to the
nodes.

s

s

ϕ

ϕ

1

1

Pi

ϕi

Pj

Pk

ϕk

Pl

y

x

Figure 3.3: Explicit weighting of two exemplary beam paths on a two-dimensional field
using the nodal element basis. The nodes are indicated by the dots P and
the basis functions are denoted by the functions ϕ.

The radar forward operator (Eq. 3.3) derived from Equation 2.2 allows the description
of the measured reflectivity Z ′ in relation to the intrinsic reflectivity Z and specific
attenuation on a regular grid. It is important to note that the measured reflectivity in
Equation 2.2 as well as Equation 3.3 depends on the PIA and thereby includes the full
radar beam starting from the radar site. Placing the radar outside of the model domain
results in an underestimation of the PIA due to missing nodes, which are affected by
specific attenuation nevertheless. The modeling of the measured reflectivity with the
radar forward operator enables the methodology of a retrieval method (Sec. 3.2).

3.2 Methodology

The intrinsic reflectivity and specific attenuation in a common measurement domain
can be retrieved by an approach using simultaneous observations by a radar network.
For simplicity the setup of two anti-axially looking radars A and B is assumed, which
represents a radar network along one connecting line (Fig. 3.1). ZA,i is the intrinsic
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3.2 Methodology

reflectivity of radar A at node i. Based on the made assumptions, within the model
domain, observed by different radars A and B, the intrinsic reflectivity Zi = ZA,i = ZB,i

and the specific attenuation ki = kA,i = kB,i at a common node i is considered to be
equal. In this hypothetical case there are two information about the same measured
quantity. As the radar forward operator is an equation with two unknowns, the re-
trieval method based on a linear system of equations (LSE) can be derived following
Equation 3.3. The methodology’s kernel is similar to a tomographic problem.

The measured reflectivities Z ′ of two radars A and B are mapped on the nodes of the
domain {Pi : 1 ≤ i ≤ N}. The resulting coefficients are summarised in the observation
vector

~xo =
(
Z ′A,1, ..., Z

′
A,N , Z

′
B,1, ..., Z

′
B,N

)
. (3.6)

Similarly, the quantities to be retrieved - the intrinsic reflectivity Z and the specific
attenuation k at the nodes - are stored in the unknown analysis vector

~xa = (Z1, ..., ZN , k1, ..., kN ) . (3.7)

With this notation Equation 3.3 can be written as

F~xa = ~x0, (3.8)

F =


 IN BA

IN BB


 . (3.9)

The forward operator matrix F (Eq. 3.9) consists of the identity matrices IN with the
dimension N xN and the two beam matrices BA and BB for the radars A and B,
respectively. In general, F is large, ill-conditioned and sparse. The LSE (Eq. 3.8) is
a determined equation system for two radars. Nevertheless, its solution is not trivial.
The schemes are described in Section 3.3.

It is straightforward to adapt the technique to an arbitrary number of radars greater
or equal two. Therefore, the LSE is expanded to a 2d-geometry and, exemplary, with
three scanning radar systems A, B and C. Unlike along the connecting line, it is im-
possible to obtain perfectly matching range gates of the three systems, thus the beam
matrices are determined independently from the radial grids of the radar systems.
Standard interpolation methods, e.g. nearest neighbour, need to be applied to map the
observed reflectivities to common nodes. As proceeded for the observation vector of
two radars (Eq. 3.6), the resulting coefficients are summarised in the observation vector

~xo =
(
Z ′A,1, ..., Z

′
A,N , Z

′
B,1, ..., Z

′
B,N , Z

′
C,1, ..., Z

′
C,N

)
(3.10)
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3 Method for Network Based Retrieval

and the unknown analysis vector (Eq. 3.7) remains the same. The forward operator
matrix F (Eq. 3.9) is expanded by the beam matrix BC:

F =




IN BA

IN BB

IN BC


 . (3.11)

As a result, the matrix is no longer quadratic but of the dimensions 3N x 2N with the
number of nodes N . The system matrix F of the LSE is still sparse but huge. With
the third radar, the LSE becomes over determined. Further, the equation needs to be
solved by minimisation (Sec. 3.3).

3.3 Inverse Problem’s Solution

The following deals with the inverse solution of the introduced forward problem. The
solution of Equation 3.8 is neither for two than for more radars trivial. In general, the
forward operator matrix F is sparse, large and partly ill-conditioned. Consequently, the
LSE is not solved directly but iteratively by searching the best fitting analysis vector ~xa

for the mathematical model F and the observations ~xo, which is referred as regression.
An approximate solution may found by minimising the residual vector

~r = F ~xa − ~xo (3.12)

using any well defined metric. One commonly used metric is the 2-norm of ~r, which is
called the least squares solution (Aster et al., 2013):

minimize ‖~r‖2 . (3.13)

Standard minimisation schemes can be used, e.g. the LSQR scheme by Paige and
Saunders (1982) or the LSMR scheme by Lim et al. (2011). The solution of inverse
problems like Equation 3.13 are difficult as solution existence, solution uniqueness and
instability of the solution process have to be considered (Aster et al., 2013). Although
the explicit procedure of a minimisation scheme is not intended as the essential content
of this thesis, conditions and possible enhancements for the solution have to discussed.
For general theory of inverse problem modeling, refer to standard textbooks, e.g. Aster
et al. (2013). In the following the procedure of Equation 3.3 and Equation 3.13 is
referred to as the LSE-method.
As the radar forward operator (Eq. 2.2) describes the relation between the observed

reflectivity Z ′, intrinsic reflectivity Z and path-integrated specific attenuation k, the
LSE is derived by neglecting nodes without rain. These nodes are unattenuated. Using
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3.3 Inverse Problem’s Solution

all nodes would result in a simply wrong modelling of the system’s physics. Consider
the case that a weather radar observes precipitation along its observational path par-
tially. The integration of the specific attenuation k results in a PIA greater zero. See
Equation 2.1: Z ′(r) = Z(r) − ∫ r

0 k(s) ds. As this equation includes the PIA and the
term is for the residual observational path greater zero, these residual reflectivities Z
originally 0 dBZ are not well described. The considered case at an exemplary non-rainy
node behind the precipitation area (r = l) is characterised by Z(l) = 0, k(l) = 0 and
Z ′(l) != 0. Since the integral over all k is greater than 0 dB, Z ′(l) 6= 0. Above all, the
nodes to be retrieved are reduced and thus computing capacity decreases.
This leads to the solution’s challenge, that the forward operator matrix F is memory-

intensive due to its dimension (R ·N) x (2 ·N), with R is the number of radars, which
is greater or equal two. The number of nodes N for a grid resolution of 100 m is in
the order of 104, thus F is in the order of 108. Assuming the entries to be 64 bit floats
results approximately in memory-usage of 1 GB. The storage requirement increases
for the usage of more radars. An idea to circumvent the numerical and technical
difficulties of minimising the residuum for such a huge system, is a multigrid approach
as used in mathematics. The model is solved iteratively on a very coarse grid. The
grid is successively refined and the coarser scale solution is used every time as first
guess for the minimisation at the next level. Since attenuation is an integral effect,
it is reasonable to assume that this approach increases the convergence speed on the
minimisation significantly. Refer to Xu and Zikatanov (2017) for details on standard
multigrid approaches.
Another possibility to improve the solution scheme is to apply other regressions.

The L1 regression is the 1-norm of the ~r and could be beneficial because least squares
solutions are highly sensible to outliers, which may arise from measurement errors.
Nevertheless, L2 regression with the 2-norm is used because the least squares solution
is unbiased in statistical terms (Aster et al., 2013).
Furthermore, the inverse solution can be highly unstable in that small changes of

observations, like noise, can lead to an erroneous change in the estimation. This LSE
is said to be ill-conditioned. Additional constraints can stabilise the solution. Informa-
tion, like the knowledge that the specific attenuation is always greater or equal zero,
can be added with the method of Lagrange multipliers. The method of Tikhonov reg-
ularization can be used for stabilising inverse problem solutions in common, where a
damped and constrained minimisation is considered (Aster et al., 2013).
However, regularisation or more complex schemes are beyond the scope of this work.

This thesis aims to show fundamental opportunities of the LSE-method. Thus, the
retrieval method is explored with a basic LSE (Chap. 4).
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4 Experimentation of the Retrieval
Algorithm on Synthetic Radar Data

The following chapter covers the implementation of the retrieval method for attenua-
tion and reflectivity in a networked environment, as proposed in Chapter 3. In order to
apply the retrieval algorithm an evaluation is required. For that reason, a sensitivity
analysis is realised by implementing the retrieval algorithm on weather radar data with
a superimposed varying uncertainty. To have simultaneous weather radar observations
with and without the impact of attenuation and uncertainty, synthetic data is gen-
erated. The first step of this process is to consider an idealised box precipitation in
an one-dimensional weather radar network’s setup along the connecting line (Fig. 3.1).
Step by step the setup’s complexity is enhanced. The precipitation varies from constant
boxes to fluctuating fields based on Gaussian random fields. The model’s geometry en-
larges from one to two dimensions. The weather radar network expands from two to
three radars. The conceivable error sources are introduced separately. All in all, realis-
tic weather radar observations are approximated and isolated effects on the retrieval’s
solution are investigated. Details on evaluation’s methodology are summarised in Sec-
tion 4.1. The synthetic weather radar data with its different complexity is described
in Section 4.2. The synthetic data is investigated for several setups: a constant one-,
two-dimensional field, and a realistically structured two-dimensional Gaussian field in
Section 4.3.
Note, as there are different outputs for same variables one notation is defined. Con-

sider a quantity x. The observation of this quantity is indicated by a prime: x′. The
retrieved quantity is indicated by a hat: x̂. The intrinsic quantity is just as it is: x.
Quantity x is in fact the vector ~x and includes more than one entry for each node. In
the following this notation is used.

4.1 Methodology

The structure of the evaluation’s procedure of the LSE-method is summarised in an out-
line similar to a flowchart (Fig. 4.1). The first step is to consider an intrinsic reflectivity
Z and specific attenuation k. Isolated uncertainties, e.g. noise or local perturbations,
can superimpose these given quantities. Noise and clutter is known to be additive to
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intrinsic
reflectivity Z

and
attenuation k

+ uncertainty

Radar
forward
operator

observed
reflectivity Z ′ Retrieval

retrieved
reflectivity Ẑ

and
attenuation k̂

?

Figure 4.1: Outline for evaluating the retrieval method using synthetic data.

the measurements (Doviak and Zrnić, 1993). The intrinsic reflectivity Z and specific
attenuation k are transferred to the observed reflectivity Z ′ by using a radar forward
operator (Eq. 2.2). The discretised radar forward operator is introduced in Section 3.1.
The retrieval method is applied on this synthetic observed reflectivity Z ′, as the LSE-
method is the inverse solution of the radar forward operator. Thus, the application of
the method results in the retrieved reflectivity Ẑ and specific attenuation k̂. The expec-
tation is that the retrieved and intrinsic reflectivity and attenuation are equal: Ẑ != Z

and k̂ != k. The comparison of the retrieval with the truth examining several setups is
used as evaluation. Every uncertainty is added isolated, thus it can be determined how
sensible the LSE-method reacts. The sensibility between the uncertainty effects can
be compared using established measures. These measures - bias and root-mean-square
error (RMSE) - are used as defined in the following:

BIAS(x̂) = 1
N

N∑

i=1
x̂i − xi, (4.1)

and

RMSE(x̂) =

√√√√ 1
N

N∑

i=1
(x̂i − xi)2, (4.2)

with N is the number of nodes, x is the intrinsic, and x̂ is the retrieved quantity.

Note, there are two synthetic precipitation origins. The intrinsic quantities can be
given in Cartesian or polar radar coordinates, as measured. If the reflectivity is given in
polar radar coordinates, the attenuation can be subtracted range bin to range bin over
the propagation path to apply the forward operation. In that case the observations have
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Figure 4.2: Synthetic one-dimensional box precipitation in quantities of radar reflectiv-
ity Z and path-integrated attenuation (PIA). Observations are indicated
by a prime ( ′ ), retrieved quantities are indicated by a hat (̂ ) and intrinsic
quantities have no special indication.

to be interpolated onto a Cartesian grid to apply the proposed LSE-method. Since the
interpolation might be another element of uncertainty, most cases are set in Cartesian
coordinates so that the focus is on the retrieval method. The synthetic precipitation
areas mapped on the coordinates is described in Section 4.2.

4.2 Data

The synthetic weather radar data is the basis of the retrieval’s evaluation because the
truth of the retrieved quantities is known.

One-dimensional box precipitation

The first step towards the application of the LSE-method on real data is to explore the
algorithm in simple manner. A synthetic one-dimensional box precipitation observed
by two radars (radar A and radar B) along the connecting line is considered (Fig. 4.2).
The radars observe a constant precipitation area characterised by a rain rate R of
10 mm h−1 and an expanse of 12900 m. The model domain covers 25000 m discretised
on 2500 nodes. With appropriate relations, the rain rate R can be transferred to
the intrinsic reflectivity Z and specific attenuation k. For this purpose an exemplary
z-R-relation

z = 400 ·R1.4 (4.3)

21



4 Experimentation of the Retrieval Algorithm on Synthetic Radar Data

and k-R-relation
k = 0.01 ·R1.21 (4.4)

are used, where Z is the intrinsic reflectivity in mm6 m−3, k is the intrinsic specific atten-
uation in dB km−1, and R is the rain rate in mm h−1 (Doviak and Zrnić, 1993). Accord-
ing to Equation 4.3 and Equation 4.4 the box precipitation results in radar quantities
of Z = 40.02 dBZ and k = 0.16 dB km−1. The radar forward operator (Sec. 3.1) results
in the observed reflectivities Z ′A and Z ′B decreasing linearly to 35.82 dBZ (Fig. 4.2).
The path integral of the specific attenuation k integrated over the full path,

PIA =
∫
k ds, (4.5)

results in PIAA = PIAB = 4.20 dB influencing the observations of both radars.

Two-dimensional box precipitation

To enhance complexity of the scenario for the retrieval’s evaluation, the one-dimensional
setup is expanded to a two-dimensional geometry (Fig. 4.3). The domain covers
25000 m × 22000 m discretised on 598 nodes. The values are considered to be
the same as in the one-dimensional case with R = 10 mm h−1, Z = 40.02 dBZ and
k = 0.16 dB km−1. The two-dimensional geometry makes it possible to place two,
three (Fig. 4.3) or more radars inside the model domain. The radar forward operator
(Sec. 3.1) results in the observed reflectivity and attenuation. According to Equa-
tion 4.5 the observations of three radars A, B and C are influenced up to a maximum
of PIAA = 8.86 dB, PIAB = 8.86 dB and PIAC = 8.29 dB. The radar reflectivity and
specific attenuation can be retrieved on the basis of either two or three observations,
thus the LSE is either determined or over determined. However, constant observations
are still oversimplifying the problem.

Two-dimensional Gaussian field

A realistically structured synthetic two-dimensional precipitation area is created for
the evaluation (Fig. 4.4). For this purpose, the radar reflectivity is assumed to be of
Gaussian random fields (Abrahamsen, 1997; Powell et al., 2014). Details on Gaussian
random fields exceed the scope of this thesis, therefore refer to Abrahamsen (1997). The
method uses the assumption that a reflectivity field Z in the limits of 0 dBZ and 70 dBZ
is created (Fig. 4.4a). The intrinsic specific attenuation is derived with Equation 4.3
and Equation 4.4 (Fig. 4.4b). This exemplary, intrinsic radar reflectivity is in the limits
of 0.00 dBZ and 62.92 dBZ. The associated, intrinsic specific attenuation is in the limits
of 0 dB km−1 and 9.44 dB km−1. According to the radar forward operator (Eq. 3.1) the
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Figure 4.3: Synthetic two-dimensional box precipitation in quantities of PIA covering
the area of exemplary radars. The radar sites are indicated by red markers.
The regarding radar site is indicated by a cross.
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Figure 4.4: Synthetic two-dimensional precipitation in quantities of radar reflectivity
and specific attenuation covering PATTERN-area. The red dots indicate
the radar sites HWT (north), MOD (east), BKM (west).
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observed reflectivity Z ′ is in the limits of −25.49 dBZ and 53.57 dBZ. The PIA influ-
ences up to a maximum of 55.99 dB following Equation 4.5. Although the considered
values are overstated, this test case is suitable as an object of investigation because
of the structure of the field. The synthetic two-dimensional model domain covers the
PATTERN-area with 32000 m x 32000 m discretised on 4096 nodes, which corresponds
to a 500 m resolution. In general, the retrieval’s application on this synthetic field can
demonstrate the capability of the LSE-method on realistic structures.
The evaluation of the retrieval is discussed for these three theoretical setups. The

intrinsic observations fulfil the assumptions as defined for the LSE-method, see Chap-
ter 3:

• The observations are vertically homogeneous.

• The intrinsic reflectivity is equal for same nodes.

• The measurements are simultaneous.

4.3 Retrievals

The LSE-method is evaluated for synthetic, two-dimensional, and realistic structured
precipitation areas. Initially, the retrieval of idealised box precipitation is evaluated in
one dimension and in two dimensions.

One-dimensional constant field retrieval

The LSE-method is applied to the synthetic one-dimensional box precipitation observed
by two radars along the connecting line (Sec. 4.2). The intrinsic data has no uncer-
tainty in form of noise or local perturbations. Following the outline for the evaluation
(Fig. 4.1), the retrieval algorithm results in the expectations. The intrinsic and re-
trieved quantities are equal (Fig. 4.2). Changing the expansion of the one-dimensional
box precipitation including 2500 nodes to a an uneven number, e.g. 2501 nodes, leads
to a singular LSE. The singular solution of the LSE is challenging and requires reg-
ularisation procedures. Refer to Aster et al. (2013) for advanced solving methods.
Notwithstanding the singular case, the simple retrieval method with its non-singular
LSE is investigated for further setups. Additional uncertainties are examined for the
one-dimensional constant field retrieval.
As clutter influences the radar signal locally (Lengfeld et al., 2014), these pertur-

bations may have an impact on the performance of the retrieval technique. Following
the evaluation’s outline (Fig. 4.1), local perturbations are considered to superimpose
the synthetic observations. The perturbations are at different locations for both radar
observations (Fig. 4.5). Radar A measures the reflectivity Z ′A at 9.9 km and 10.1 km
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Ẑ

0

2

4

6

8

10

Pa
th
-in

te
gr
at
ed

at
te
nu

at
io
n
(d

B)

P̂IAA

P̂IAB

Figure 4.5: Retrieval on synthetic one-dimensional box precipitation in quantities of
radar reflectivity and path-integrated attenuation with superimposed local
perturbations on the observations. Analogous visualisation to Figure 4.2.

with −2 dB and at 10.0 km with −4 dB offset. Analogously, radar B observes the equal
differences in Z ′B at 10.8 km, 10.9 km and 11.0 km. The perturbations have impact on
the results of the LSE-method. The retrieved reflectivity Ẑ is nearly negligible negative
biased as the perturbation introduces negative differences: BIAS(Ẑ) = −0.06 dB. Gen-
erally, the impact of local perturbations on Ẑ remain at the perturbations’ locations.
As a result, the RMSE is driven by the standard deviation: RMSE(Ẑ) = 0.30 dB. The
retrieved specific attenuation k̂ is not biased. Nevertheless, the local perturbations
influence k̂. The retrieved specific attenuation k̂ is characterised by significant local
overestimation and underestimation: RMSE(k̂) = 1.75 dB km−1. The resulted RMSE
is one magnitude greater than the intrinsic specific attenuation k = 0.16 dB km−1. The
effect of the local perturbations on k̂ is shown in the form of the PIA in Figure 4.5.
The solution becomes locally unstable. There are negative results in k̂, which are not
physically plausible but mathematically possible. For the case that the local perturba-
tions are considered to be at the same locations the retrieval algorithm results in the
expected solution: Z = 40.02 dBZ and k = 0.16 dB km−1. The retrieved reflectivity Ẑ
preserve the local negative perturbation. The retrieved specific attenuation k̂ results in
the exact constant value. In summary, local perturbations impact the solution of the
LSE-method locally.

Note, that ideally the radar data’s preprocessing removes clutter and interpolates
missing data. But, remaining missing values have an impact on the solution of the
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Figure 4.6: Retrieval on synthetic one-dimensional box precipitation in quantities of
radar reflectivity and path-integrated attenuation with superimposed Gaus-
sian noise sample (STDEV(n) = 0.25 dB) on the observations. Analogous
visualisation to Figure 4.2.

retrieval. The LSE-method includes only nodes with existing observations of all re-
spective radars. Therefore, missing values within the LSE lead to the underestimation
of PIA affecting the retrieval’s solution.

Additionally to clutter, the radar measurements are affected by noise induced by
the atmosphere and internal electronics. The noise is generally removed by existing
algorithms (Lengfeld et al., 2014). Nevertheless, the possible impact of remaining noise
on the performance of the retrieval technique needs attention. Some noise can remain
in the measurements. Following the evaluation’s outline (Fig. 4.1), Gaussian random
noise samples are considered to superimpose the synthetic observations (Fig. 4.6). The
noise n as random noise sample from a normal distribution has the standard devi-
ation STDEV(n). The noise is radar-dependent. Therefore, different noise samples
with the same STDEV are created. In the event the noise samples superimpose the
synthetic radar reflectivities Z ′A and Z ′B with STDEV(n) = 0.25 dB (Fig. 4.6), the LSE-
method results in a biased reflectivity Ẑ and attenuation k̂: BIAS(Ẑ) = 1.46 dB and
BIAS(k̂) = 0.11 dB km−1. These noisy observations do not result in a noisy retrieved re-
flectivity Ẑ (Fig. 4.6). Consequently, the RMSE of the retrieved reflectivity Ẑ is primar-
ily driven by the bias: RMSE(Ẑ) = 1.47 dB. The RMSE of the retrieved attenuation
k̂ is dominated by noise and thus the standard deviation: RMSE(k̂) = 20.40 dB km−1.
With this RMSE the attenuation retrieval is random. Nevertheless, the unusable result
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is reasonable as the STDEV of the noise is 10 times greater than the magnitude of
the smallest quantity to retrieve, which is the specific attenuation. The specific at-
tenuation with its constant value of 0.16 dB km−1 is retrieved for every node on the
grid with a resolution of 100 m. Thus, the quantity to retrieve is 0.016 dB node−1 but
with this superimposed noise the information is lost. To quantify the effect of noise, an
ensemble of retrievals with different noise samples n is examined (Fig. 4.7). A number
of 10000 ensembles is considered. The standard deviation of the superimposed noise
samples STDEV(n) is limited up to roughly 1 dB. In detail the range of STDEV(n)
is subdivided in 100 values and for every value 100 noise samples are generated, so
the ensemble members are evenly distributed. One outcome of the ensemble study is
that with increasing STDEV(n) the retrieval’s uncertainty grows respectively. Different
noise samples with same STDEV(n) can result in entirely different results (Fig. 4.7).
The retrieved radar reflectivity is appropriate in some cases but the number of en-
sembles with strong bias and RMSE increases with increasing STDEV(n) (Fig. 4.7a).
The retrieval’s solution for the specific attenuation becomes random with increasing
STDEV(n) as the RMSE is mainly driven by the standard deviation (Fig. 4.7b). All
in all, the retrievals characterised by strong bias and RMSE occur for a standard de-
viation of the noise sample STDEV(n) greater than 10 times of the magnitude of the
specific attenuation per node: > 10 · O(k). The information of this quantity is lost in
significant noise. For moderate noise (< 10 · O(k)) the retrieval’s solution is reliable
based on the measures of bias and RMSE. This moderate noise is expected since it is
removed within the processing chain of the radar data (Chap. 5). The noise is assumed
to be negligible for rain events compared to non- or light rain events. Additionally, the
attenuation correction with the LSE-method is needed for rain events, especially strong
ones. In summary, the expected noise results in an robust solution of the LSE-method.
As Chapter 5 deals with real radar data, the range of noise values is shown.
Note, the uncertainties are added in logarithmic unit even though they are only

additive in linear unit. However, the usage of logarithmic unit is more clearly and the
impact of uncertainties on the retrieval algorithm remains the same. As the impact of
local perturbations and noise on the retrieval’s solution is known, the complexity of the
setup is enhanced by a retrieval for two-dimensional constant fields.

Two-dimensional constant field retrieval

The LSE-method is applied to the two-dimensional box precipitation (Sec. 4.2). As a
first step, the observations of two radars are used to retrieve the constant reflectivity
and specific attenuation describing the box precipitation (Fig. 4.8). The observed
reflectivity is not superimposed by uncertainties. Following the evaluation’s outline
(Fig. 4.1), the LSE-method results in the expectations, similar to the simple, one-
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Figure 4.7: Retrieval on synthetic one-dimensional box precipitation. Gaussian noise
samples n with different standard deviations STDEV superimpose the ob-
served reflectivities. The horizontal line shows ten times the smallest quan-
tity to retrieve, the intrinsic specific attenuation k respective to the spacial
resolution. The bias and RMSE of the quantities measure the impact of
noise on the retrieval’s solution.
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Figure 4.8: Reflectivity and attenuation retrieved from a two-dimensional constant field
observed by two radars. The dots indicate the two radar sites A (west) and
B (east).
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dimensional solution, but only partially. The quality of the result decreases at the edges
of the model domain. In the domain’s centre the intrinsic and retrieved reflectivity and
specific attenuation are equal (Fig. 4.8). Nevertheless, the radar reflectivity Ẑ is biased
with −3.48 dB and has a RMSE of 11.83 dB. The retrieved specific attenuation k̂ is
negative biased with −0.94 dB km−1 and is characterised by a RMSE of 6.60 dB km−1.
The measures correspond to the incorrect results at the edges. One assumption for this
uncertainty is that the retrieval’s solution tends to instability because less equations
of the LSE have an impact on the results of the edge nodes. The difficulty of the
singular solution, as described in one dimension, maintains in this setup. For that
reason, an uneven number of nodes between two radar sites is a challenge. However,
the observations by a third radar (Fig. 4.3) stabilise the solution of the LSE-method.
With three or more radars the LSE is overdetermined. The probability of a singular LSE
is minimised. Additionally, the quality of the result increases at the edges of the model
domain. For this setup (Fig. 4.8), the intrinsic and retrieved radar reflectivity Ẑ and
specific attenuation k̂ are equal. In summary, increasing the number of independent
information, e.g. by further radar observations, stabilises the solution of the LSE-
method. In the following, additional uncertainties are examined for the two-dimensional
constant field retrieval. The results of the one-dimensional retrieval are straightforward
applicable to two dimensions.

Beside clutter and noise, the networked weather radar observations may be biased
due to different calibrations (Lengfeld et al., 2014). Ideally, an absolute calibration
based on MRR measurements (Lengfeld et al., 2014) or at least relative calibration
(Burgemeister, 2018) is applied. Nonetheless, the impact of biased radar observations
on the retrieval’s solution is considered (Fig. 4.9 and 4.10). The setup is still the two-
dimensional constant field observed by the three radars A, B and C. The exemplary
calibration errors c, superimposing the observations, are for radar A cA = 2 dB, radar
B cB = −3 dB and Radar C cC = 0 dB. The calibration errors result in an appropriate
retrieval for the radar reflectivity Ẑ: BIAS(Ẑ) = 0.04 dB and RMSE(Ẑ) = 1.00 dB
(Fig. 4.9a). Some outliers are located at the edge of the model domain. Although
the retrieved specific attenuation k̂ has no bias, the values vary widely: RMSE(k̂) =
0.88 dB km−1 (Fig. 4.9b). With this variation of the specific attenuation k̂, the retrieval
is not reliable. To quantify the calibration’s impact on the solution of the LSE-method,
an ensemble study with this setup is performed (Fig. 4.10), analogous to the noise
ensemble study in one dimension (Fig. 4.7). A number of 1000 ensembles is considered.
Calibration biases c are added to the observed reflectivities Z ′. The calibration biases
are similar to real parameters worked out by Lengfeld et al. (2014). The absolute
sum of the three calibration biases c measures the total calibration bias. On the one
hand, the retrieval of the radar reflectivity Ẑ is robust against the calibration error
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Figure 4.9: Reflectivity and attenuation retrieved from a two-dimensional constant field
observed by three radars biased by a calibration error. The dots indicate
the three radar sites A (west), B (east), C (north).
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Figure 4.10: Retrieval on synthetic two-dimensional box precipitation. Calibration bi-
ases c superimpose the observed reflectivities Z ′ of the three radars A, B
and C. The bias and RMSE of the quantities measure the impact of the
calibration bias on the retrieval’s solution.
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because the bias and RMSE are relative small compared to the intrinsic reflectivity Z
(Fig. 4.10a). On the other hand, a total calibration bias results in fluctuating retrieved
specific attenuations k̂ as shown with the RMSE (Fig. 4.10b). The bias of the specficic
attenuation k̂ is small compared to the intrinsic specific attenuation k = 0.16 dB km−1.
In summary, a well-calibrated weather radar network is mandatory for the application
of the LSE-method.
Further to clutter, missing values, noise, and calibration errors, the used interpolation

method may introduce uncertainty. Based on the outline for the evaluation of the
retrieval method (Fig. 4.1), the two-dimensional constant field is discretised on the
polar observation grids of the three radars A, B and C. The considered polar observation
grid is characterised by 1◦ azimuth resolution in a range between 0◦ and 359◦ and a
distance resolution of 1000 m in a range between 0 m and 27000 m. The intrinsic specific
attenuation is subtracted for each range bin and azimuth over the propagation path
to infer the forward operation. The attenuated observations of the three radars are
interpolated on the Cartesian two-dimensional model domain (Fig. 4.4) by an arbitrary
linear interpolation method. Applying the LSE-method to the simple solution results
in the expectations: the intrinsic and retrieved quantities are equal. Nevertheless, an
ill-suited interpolation method manipulating the data introduces uncertainty because
the modified observations would not apply to the basis of the LSE-method.
The impact of local perturbations, missing values, noise, calibration errors and num-

ber of observation on the retrieval’s solution is known for one- and two-dimensional
constant field retrievals. Each error source creates difficulties so that with a certain
disturbance the LSE becomes instable, which hinders a solution of the retrieval. Due
to the magnitude of the different quantities, the retrieval of the radar reflectivity Ẑ

is more stable than of the specific attenuation k̂. Because the assumption of a con-
stant field of radar reflectivity and specific attenuation oversimplifies the complexity, a
two-dimensional Gaussian field retrieval is investigated.

Two-dimensional Gaussian field retrieval

The LSE-method is applied to a realistic structured two-dimensional precipitation area
based on Gaussian random fields (Sec. 4.2). It should be noted that the findings
based on the retrieval analysis of the box-precipitation are straightforward applicable
to the realistic structured precipitation. In this setting, the theoretical precipitation
area covers the PATTERN-area (Sec. 2.1) and is observed by the three weather radars
HWT, MOD and BKM. The observation of intrinsic reflectivity by the respective
radars is distinct due to the different integrated attenuation along the paths, the PIA
(Fig. 4.11). Applying the LSE-method to these undisturbed observed reflectivities Z ′

results in the expectations. The intrinsic and retrieved quantities are equal: Z = Ẑ and
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Figure 4.11: Distribution between the observed and intrinsic radar reflectivity of a two-
dimensional precipitation area based on Gaussian random fields.
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Figure 4.12: Distribution between the retrieved and intrinsic quantities of a two-
dimensional precipitation area based on Gaussian random fields.

k = k̂ (Fig. 4.12). The LSE-method is applicable to realistic structured precipitation
taking the presumptions into consideration, described in Section 4.2.

On the contrary, the value range of the damped observed reflectivities consist of
values below 0 dBZ (Fig. 4.11). Reflectivities Z < 0 dBZ are no rain events. A reflec-
tivity Z of 10 dBZ is in terms of a rain rate R smaller than 0.1 mm h−1 according to
Equation 4.3. The specific attenuation k is negligible for this value range. Within an
implementation of the LSE-method on real weather radar data, these small observed
reflectivities need to be discarded because of the insufficient measurement’s sensitivity.
As a result, depending on the precipitation pattern, also relevant reflectivity values
may be discarded. Intrinsic reflectivities Z greater than 10 dBZ are relevant. Other-
wise, the algorithm could create artificial rain events. Missing relevant values lead to
an underestimation of PIA, as described in one dimension. In summary, patterns with
strong attenuation lose information because observed reflectivities get lost in measure-
ment’s sensitivity. The LSE-method is applicable to realistic structured precipitation
with limitations of every attenuation correction.

All in all, the experimentation of the LSE-method on synthetic radar data demon-
strates capabilities and deficiencies considering the presumptions:

• The retrieval algorithm is applicable to synthetic radar reflectivity measurements.

• The singular case of the LSE remains as an issue for two observing radars.

• Local perturbations of the observations, e.g. clutter, have a local impact on the
solution.
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• Missing attenuating values within the LSE lead to the underestimation of the
solution.

• Moderate, expected noise results in a robust solution.

• A bias in the radar’s calibration can result in fluctuations in the solution.

• A well-calibrated weather radar network is mandatory.

• The uncertainty occurs at the rain area edges in the first place.

• Increasing the number of independent information, e.g. from additional radars,
stabilises the solution.

• An ill-suited interpolation method manipulating the data introduces uncertainty
to the solution.

• Patterns with strong attenuation lose small observed reflectivities and thus pos-
sibly relevant information.

Notwithstanding the limitations of the LSE-method, the retrieval of reflectivity and
attenuation on real radar data is applied and discussed in Chapter 5.
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5 Application of the Retrieval Algorithm
on Real Radar Data

The applicability of the LSE-method to retrieve reflectivity and specific attenuation
by using real weather radar observations has not yet been shown. Still, the synthetic
radar data already approximates real conditions (Chap. 4), and thus shows limitations
by measuring errors and potentiality by accurate results. The assumptions of the
synthetic data and LSE-method have to be noted:

• The vertical reflectivity profile is constant.

• The intrinsic reflectivity is equal for the same nodes.

• The observations are simultaneous.

With real observations, uncertainties are investigated and outlined. The weather radar
network of PATTERN provides a series of simultaneous measurements by X-band
weather radars and MRRs. The weather radars HWT, MOD, and BKM are taken
into account for the retrieval due to the network’s structure. The three radars are
the closest radars out of the network of the four weather radars. With a radius of
20 km each, the radars span an overlapping area of roughly 1200 km2. Based on the
observations of a selected case, the results of the retrieval algorithm are discussed.
Exemplary observed reflectivities Z ′ from the 15.05.2013 15:45:00 UTC are consid-

ered (Fig. 5.1). The selected case includes a spacious rain area with high reflectivities
in parts indicating strong rain rates. Consequently, nodes of high reflectivities are af-
fected by strong attenuation (Chap. 2). The radar data is cleaned from noise, clutter,
and is calibrated with MRR-observations as described by Lengfeld et al. (2014). The
data preprocessing reduces the errors of the observations but lacks the correction of
attenuation. The maxima of the measured reflectivities of the weather radars are
max(Z ′HWT) = 55.01 dBZ, max(Z ′MOD) = 56.47 dBZ, and max(Z ′BKM) = 51.52 dBZ.
Additionally, the simultaneous measurements partially show structural similarities, e.g.
the high reflectivity in the south of the radar site MOD. Nevertheless, the amplitudes
of Z ′ appear to be different (Fig. 5.1). Missing values within the observation occur in
the near field of the radar. A further notable structural difference is the high reflec-
tivity area in the south of the overlapping area. The radar BKM can not observe this
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Figure 5.1: Exemplary observed reflectivities Z ′ of the PATTERN weather radar net-
work, 15.05.2013 15:45:00 UTC. The values are interpolated on the Carte-
sian model domain. The red dots indicate the three radar sites HWT
(north), MOD (south east), and BKM (west). The dotted lines show the
20 km radius of the respective radar. Z ′ is calibrated, noise-, and clutter-
free. Missing values are also shown as 0 dBZ.

40



0

1

2

3

N
um

be
r

of
ob

se
rv

at
io

ns
(1

)

Figure 5.2: Map of simultaneous observed reflectivities Z ′ greater than 0 dBZ,
15.05.2013 15:45:00 UTC. The red dots indicate the three radar sites of
PATTERN: HWT (north), MOD (south east), and BKM (west). The dot-
ted lines show the 20 km radius of the respective radar.

high reflectivity event, whereas the radars HWT and MOD measure reflectivities about
50 dBZ. In summary, uncertainties characterise the observations of the weather radar
network. On the one hand, the three radars measure different reflectivities as expected
by the presence of attenuation. On the other hand, the weather radars observe dif-
ferent extents of the same rain area (Fig. 5.2). Within the overlapping area, 99.1% of
the nodes are measured with a reflectivity greater than 0 dBZ by at least one weather
radar, 97.1% by at least two weather radars, but only only 65.0% by all three radars.
The factors that could impact the observations and thus the quality of the retrieval are
discussed in detail within this chapter. Firstly, the LSE-method is applied on the real
weather radar data within the network (Fig. 5.3).

The LSE-method results in the radar reflectivity Ẑ (Fig 5.3a) and specific attenuation
k̂ (Fig 5.3b) for the observations from the 15.05.2013 15:45:00 UTC. Following the
theoretical background of the LSE-method, quantities can only be retrieved for nodes
where all three radars have valid measurements (Chap. 3). Consider a node with
a measured reflectivity Z ′ greater than 0 dBZ observed by at least one radar as a
potentially rainy node. As a result, only for 65.5% of these nodes the retrieval can be
applied. Apparently, the retrieval algorithm lacks information from missing rainy nodes
(Fig. 5.3). Nevertheless, the retrieved radar reflectivity Ẑ shows a recognisable structure
compared to the observed reflectivities Z ′ (Fig. 5.3a). Contrarily, at the retrieved
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Figure 5.3: Retrieval of exemplary observed reflectivity Z ′ of the PATTERN weather
radar network, 15.05.2013 15:45:00 UTC. The red dots indicate the three
radar sites of PATTERN: HWT (north), MOD (south east), and BKM
(west). The dotted lines show the 20 km radius of the respective radars.
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area’s edges, unphysical high reflectivities and reflectivity gradients are retrieved. The
described high reflectivity event, which is observed by the radars HWT and MOD, but
not BKM, results in high negative reflectivities and thus the intrinsic reflectivity Z is
lost. With Equation 2.1, the difference between the retrieved and observed reflectivity
Ẑ − Z ′ leads to a retrieved P̂IA. The intrinsic PIA for the three radar observations
is physically always positive, but this retrieved P̂IA is also negative in parts. Overall,
the retrieved reflectivity Ẑ is not the expected intrinsic reflectivity Z. The expected
intrinsic reflectivity Z is a continuous reflectivity field, comparable to a Gaussian field.
Unlike the retrieved reflectivity Ẑ, the retrieved specific attenuation k̂ is characterised
by fluctuations. k̂ is positive and negative without apparent structure. In summary,
the retrieval algorithm is not applicable to this case. To clarify, the factors impacting
the quality of the retrieval are discussed in detail.

First of all, clutter reduces the quality of the retrieval. The measurements lack values
in the radars’ near field because of clutter induced by the ground. Because of the clutter
removal, the area of observed reflectivities is not closed. Due to the number of missing
values, the interpolation is not able to restore these areas. The missing values lead to
the underestimation of the PIA as described in Section 4.3.

Additionally, the attenuation leads to structural differences based on missing or low
values. Strong attenuation can lead to blind spots if the backscattered signal is too
weak. Exemplarily, the radar BKM can not observe the high reflectivity event in the
south of the overlapping area, whereas the radars HWT and MOD measure reflectiv-
ities about 50 dBZ. This observation is probably based on the PIA. Over the path,
areas with reflectivities over 35 dBZ attenuate the radar signal. In summary, strong
attenuation may result in missing or too low values and thus decreases the quality of
the retrieval algorithm.

Even though strong attenuation and clutter are factors that reduce the retrieval’s
quality, noise induced by the atmosphere and internal electronics is not expected to
be an issue. In general, the noise level is estimated from a rain-free measurement.
In detail, if more than 10% of the radar range gates detect no rain after subtracting
an initial guess from the original measurement, the 10th percentile of the original
measurement is chosen as the noise level (Lengfeld et al., 2014). This noise level is
spatially independent and subtracted from the observed reflectivity. Measurements
of the PATTERN radar network, taken on the 15.05.2013 between 11:00:00 UTC and
19:59:30 UTC, are investigated. The estimated noise levels by the method from Lengfeld
et al. (2014) are in the order of 10−7 mm6 m−3. This noise level does not modify
relevant reflectivities at all. As an example, a small rain rate of R = 0.1 mm h−1

results with Equation 4.3 in z = 15.9 mm6 m−3, or 12.0 dBZ. The subtraction of the
noise level from the reflectivity is not relevant within this magnitude. With another
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point of view on the observation’s noise, Jacob (2016) applied a simple, fast noise
variance estimation by Immerkaer (1996). The noise is estimated depending whether
the measurements are rainy or rain-free. Jacob (2016) proposes that the mean image
noise of reflectivity is about 0.5 dB for the PATTERN radars. This mean image noise
as a hypothetical noise of the observation can increase the bias and RMSE of the results
(Fig. 4.7). However, this mean image noise probably overestimates the observation’s
noise. Immerkaer (1996) limits the applicability of this noise variance estimation for
highly textured images, which includes weather radar observations. Overall, noise is a
minor factor doe not affect the quality of this retrieval.

Retrieval methods based on weather radar networks suffer especially from geomet-
rical aspects. Chandrasekar and Lim (2008) mentioned the range resolution volume
mismatch and pointing mismatch for common volumes. The intrinsic reflectivity is
assumed to be equal at same nodes for all radars. The observation volumes can be
different due to the beam expansion and beam angle. Because the distribution of rain-
fall is commonly non-uniform, this results in a range resolution volume mismatch. The
error can be minimised for small resolution volumes. Further, azimuth misalignment of
the radar leads to a pointing mismatch spatially. Different nodes are compared because
the radars are spatially apart. Additionally, the scanning geometry results in different
measuring heights due to the beam width and elevation angle (Jacob, 2016). Never-
theless, the LSE-method and elevation are based on a strong restriction. The vertical
microphysical properties of the precipitating area are assumed to be approximately
constant or the elevation angle of the radars is nearly zero. The elevation angles of
the radars are roughly 3◦. The measuring heights, defined as the mean beam height of
the three radars, are in the range from 11 m for the radar BKM at the radar site to
1086 m for the radar HWT in maximal distance. The absolute difference of the mean
beam heights are a measure for the vertical pointing error (Fig 5.4). The maximum
of the absolute difference of the mean beam heights is 1235 m. The vertical pointing
error is not relevant if the vertical microphysical properties of the precipitation can be
assumed to be constant. For this case, different measuring heights would result in the
same reflectivities for the same nodes. Generally, for mean vertical profiles, reflectivity
is assumed to be constant between the surface and the melting layer1 (Peters et al.,
2010). Peters et al. (2010) found a significant height dependence of the reflectivity
at high rain rates by measuring the DSD. The vertical inhomogeneity is physically
reasonable because of the enhanced probability of raindrop collisions in high rain rates
(Peters et al., 2010). Based on the assumptions for the LSE-method, this implicates
a backlash. Since PATTERN includes MRR measurements, a vertical profile for the

1The level where the hydrometeors are in the phase transition between ice and water (Doviak and
Zrnić, 1993).
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Figure 5.4: Cumulated, absolute difference of the beam heights of the three radars
in meters. The dots indicate the three radar sites of PATTERN: HWT
(north), MOD (south east), and BKM (west). The dotted lines show the
20 km radius of the respective radar.

selected case of Figure 5.1 is available. Consistent with the time of the observation,
10 s-measurements are investigated (Fig. 5.5). The detailed reflectivity profile shows a
significant height dependence. The vertical reflectivity varies between 21.61 dBZ and
28.37 dBZ, thus a difference up to 6.71 dB. On the one hand, the radars HWT and
MOD observe the location of the MRR WST in the same height and extent. On the
other hand, the radar BKM observes this location in a lower altitude. The radar BKM
observes a fully different volume than the radars HWT and MOD. The different obser-
vation heights result in a bias between the individual radar measurements. The impact
of a bias superimposing the measurements on the retrieval is discussed in detail in
Chapter 4 and Figure 4.10. Additionally, Jacob (2016) already outlines the geometrical
induced uncertainty of measurements. The investigation of two theoretical weather
radars identical to the PATTERN radars with a 2◦ elevation angle and MRR measure-
ments demonstrates significant deviations in the measured reflectivities. These radars
measure between 60% more or 45% less reflectivity at the same location than a second
radar for different beam heights (Jacob, 2016). These differences have an impact on
the retrieval results (Fig. 4.10). In sum, the scanning strategy and vertical inhomo-
geneity of the reflectivity are the major factors affecting the quality of the retrieval.
The erroneous assumption impedes the LSE-method to be successful for the weather
radar network of PATTERN.
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Figure 5.5: Five exemplary vertical profiles of the radar reflectivity Z observed by the
MRR WST consistent with the observation time of Figure 5.1, 15.05.2013
15:45:47 to 15:46:27 UTC. The dashed lines shows the mean beam height
of the three radars HWT, MOD, and BKM. The shaded area indicates the
beam height including the beam width.
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All in all, the application of the LSE-method on real radar data demonstrates the
drawbacks that come along with real measurements:

• Ground clutter and strong attenuation cause missing values, underestimating the
PIA.

• Strong attenuation can weaken the backscattered signal, which can not be resolved
with the LSE.

• Noise has an insignificant magnitude and does therefore not affect the LSE solu-
tion.

• Range resolution volume and pointing mismatches result in different measure-
ments for same nodes.

• The measured reflectivities are incomparable in part due to the scanning strategy
and vertical inhomogeneity of the reflectivity.

The novel retrieval method can not estimate reflectivity and specific attenuation in
the PATTERN weather radar network. Notwithstanding, the applicability of the LSE-
method to weather radar networks with other geometries or microwave link applications
is not excluded.
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6 Conclusion and Outlook

The concept of a weather radar network providing multiple information about same
measuring volumes is a possible basis to overcome the drawback of attenuation. The
observation of intrinsic reflectivity for a common volume is distinct due to different
integrated attenuation along the paths from each radars and additional uncertainties.
Therefore, a novel retrieval method for reflectivity and specific attenuation estimates in
weather radar networks has been presented, the LSE-method. The networked observa-
tions are considered as a tomographic problem. The retrieval methodology is the least
square solution of a determined or overdetermined linear system of equations derived
from multiple observations. The LSE-method makes direct use of the physical equa-
tion relating the intrinsic reflectivity, observed reflectivity, and the specific attenuation
integrated over the path. A major advantage of this method compared to other atten-
uation correction schemes is the solution’s independence of constraints and statistical
relations, like the k-Z-relation. Furthermore, the retrieval method can be easily applied
to a weather radar network of even two or multiple radars. Due to the physical back-
ground, the radar sites have to be located within the model domain. Consequently, the
technique requires a special network design. Additionally, the vertical microphysical
properties in form of the reflectivity are assumed to be approximately constant or the
elevation angle of the radars nearly zero. Simultaneous measurements are required.
More specifically, the intrinsic reflectivities of the weather radars have to be equal on
condition.

The retrieval algorithm is first tested using synthetic weather radar data to prove the
validity and sensitivity of the method. The synthetic data allows to have simultaneous
observations and separates the impact of attenuation and different uncertainties. Sev-
eral setups with different complexity are investigated by two or three radars: a constant
one-, two-dimensional box precipitation, and realistic structured two-dimensional Gaus-
sian precipitation. The isolated uncertainties, e.g. noise, clutter or a calibration bias,
are superimposed on the synthetic observations. The sensitivity of the LSE-method
is discussed for local perturbations, noise, missing values, biases, different number of
radars, and strong attenuation. Especially a noise significant greater than the specific
attenuation and biases between the observed reflectivities corrupt the retrieval’s solu-
tion. The LSE-method is found to be applicable to synthetic data of weather radar
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networks considering the underlying assumptions of the observations.
Due to the promising results of the synthetic study, the retrieval algorithm was stud-

ied on a real world rain event. The radars of the project PATTERN provide these
real observations. The real radar data turns out to misfit the theoretical assumptions.
The measured reflectivities are incomparable in part due to the scanning strategy and
vertical inhomogeneity of the reflectivity. The radar’s scanning strategy leads to dif-
ferent measuring heights and volumes. Further, the reflectivity varies with height. In
combination, these characteristics are inconsistent with the presumptions of the LSE-
method. In addition, ground clutter and strong attenuation causes missing values in
the observations. The spacious measurements of the networked radars are inconsistent.
For example, the radars only agree on a reflectivity greater than 0 dBZ in two-thirds of
the overlapping area for the investigated rain event. The path integrated specific atten-
uation is underestimated by these uncertainties. Contrarily, the noise of the PATTERN
radars has an insignificant magnitude not affecting the retrieval. Unfortunately, the
PATTERN weather radars do not provide comparable reflectivity data for the applica-
tion of the LSE-method.
The advice for prospective attenuation correction schemes for weather radar networks

is to compare intersecting volumes explicitly. The attenuation correction of the single-
polarised X-band weather radars of PATTERN is evidently challenging. Nevertheless,
PATTERN can benefit by the synergy of horizontal, low-elevation X-band radars with
vertical pointing MRRs. Other weather radar networks consist of polarised weather
radars operating at multiple elevation, like C-band radars of the DWD, can make use
of more comparable volumes and polarisation.
Consistently, the application of the LSE-method to retrieve reflectivity and specific

attenuation is constrained to a weather radar network operating at zero elevation.
Merker (2013) describes an experimental setup for radars along connecting lines. In
further study, the observations made by this framework might validate the retrieval
method for real radar data. Unfortunately, the measurements also show inconsistencies
due to the setup of elevation and the beam expansion.
However, the fundamental analysis of the presented method to retrieve reflectivity

and specific attenuation in a weather radar network proves its theoretical validity. The
method could offer opportunities for attenuation correction of radar networks operating
in strongly attenuated frequency ranges, providing accurate and comparable data for
application. Overall, the research on attenuation correction schemes for weather radars
operating at small wavelengths has still not been completed. Weather radar networks
are capable to improve rain estimates considering the measurement’s background.
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